“AD-A183 437 COHPRRISONS OF COMPOSITE SIMPLEX ALGORITHMSCU) STHNFDRD 11
’ R SYSTEMS OPTIHIZHTIO LARB I J LUSTIG JUN 8
SOL-B?-O N@0014-83-K-0343
MLRSSIFIED : F/G 12/4

EEEE

¢ "B of o 1
., h un-wn—mhu._w

< =

|

==

|

{01,;,::)‘

|

Bz

.

P

-

-

Systems @ '7
Optimization | o

Laboratory

XX n

AD-A183 437

COMPARISIONS OF COMPOSITE SIMPLEX ALGORITHMS

by
Irvin J. Lustig

TECHNICAL REPORT SOL 87-8
June 1987

—_——/ﬂ - .
DISTRIBUTION STATEMENT 2 |

}
Approved for puklic relsaces i
Distribution Unliraitad

P TR LY P

Department of Operations Research
Stanford University
Stanford, CA 94305

'Y ﬁfﬁf'v'ﬁf\,‘-"-’;-"-". k

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY
STANFORD. CALIFORNIA 94305-4022

COMPARISIONS OF COMPOSITE SIMPLEX ALGORITHMS

by
Irvin J. Lustig

TECHNICAL REPORT SOL 87-8
June 1987

Research and reproduction of this report were partially supported by the National Science Foundation
Grants DMS-8420623. ECS-8312142, and SES-8518662. U.S. Department of Energy Grant DE-FGO3-
87-ER25028: and the Office of Naval Research Contract NOOO14-85-K-0343.

Any opinions, finding .. and conclusions or recommendations expressed in this publication are those of
the author(s) and do NOT necessarily reflect the views of the above sponsors

Reproduction in whole or in part is permitted for any purposes of the United States Government This
document has been approved for public release and sale: its distribution is unlimited

P S A

-
"~ -

]

CLA AL

."4.',‘,,'.,

5 &

Comparisons of Composite Simplex Algorithms

]

. 0 = anrw.

NTIS CRag!
DTIC Tad
Irvin J. Lustig Uinannounc -3
Department of Operations Research Justitnat,
Stanford University .
D'StiﬁbufJ"I

P e L e - -

—ee e
Accesion for
—

]

I U § S

g CD‘L-,
' |

b

¢

ABSTRACT

A-/.

-.-_—-. L

For almost forty years, the simplex method has been the method of choice for solving
linear programs. The method consists of first finding a feasible solution to the problem
(Phase 1), followed by finding the optimum (Phase II). Many algorithms have been pro-
posed which try to combine ie processes embedded i m the two-p Ease process. This study
will compare the merits of some of these composite algorithms.

Theoretical and computational aspects of the Weighted Objective, Self- Dual Paramet-
ric, and Markowitz Criteria algorithms are presented. Different variants of the Self-Dual
methods are discussed.

A large amount of computational experience for each algorithm is presented. These
results are used to compare the algorithms in various ways. The implementations of each
algorithm are also discussed. One t?leme that is present throughout all of the computational
experience is that there is no one algorithm which 1s the best algorithm for all problems.

Table of Contents
Table of Contents

Section 1. Introduction 0000 1
Section 2. The Linear Programming Problem 2
2.1 The MINOS Standard Form 2

2.2 A Generic Simplex Method00 L 3

23 AnOutlineof MINOS 3

2.4 The “MinSumiInf” RatioTest 6

2.5 Composite Simplex Algorithms 7
Section 3. Computational Testing Methodology 8
3.1 Practical Experience with the Simplex Method 8

32 TheCrashBasis 9

33 Scalingo 10

34 Tolerances e e 11

35 Pricingo e e e e e e 12

3.6 Random versus Real-World Problems 13

3.7 Testing Methodology 15

3.8 Results for the Primal Simplex Algorithm 16
Section 4. The Weighted Objective Method 19
4.1 The Weighted Objective Method: Algorithm 19

4.2 The Big-M Method 20

4.3 Absolute Value Penalty Methods 21

4.4 Implementation and Computational Results 21
Section 5. The Markowitz Criterion 26
5.1 The Markowitz Criterion: Algorithm 26

5.2 Implementation and Computational Resuits 28
Section 8. The Self-Dual Parametric Algorithm 32
6.1 Dantzig's Self-Dual Parametric Algorithm 32

6.2 Implementation and Computational Results 35
Section 7. Variants of the Self-Dual Parametric Algorithm 41
7.1 Normalized Covering Vectors 41

7.2 Fixed Variables o0 48
Section 8. Summary and Comparisons of Results 56
8.1 Comparing Many Algorithms 56

8.2 Sensitivity Analysis Lo 59

8.3 Summary and Further Research 61

8.4 Acknowledgements 0.0 000 L 61

Section 9. Bibliography R

Figure 2.
Table 3.
Table 3.
Table 3.
Table 3.
Table 3.
Table 3.
Table 3.
Table 4.
Table 4.
Table 4
Table 4
Table 4.
Table 4.
Table 5.
Table 5.
Table 5.
Table 5.
Table 5.

Table
Table

Table
Table
I'able
Table
Table

Table
Table
lable

lable

~) -1 -1~

5.
4.
4.
4.
4.
4.
4.
A1
1.
1.
1.
1.

IR TOR SO SO)

DY de bl

totg ot

J‘-AGJM-—@O‘-“GN~@U‘-&WM—-O’UA“M-~IO’U‘&NMHN

-~
>

-1

= X

-

lrlhl(T - l“

.

List of Tables and Figures

List of Tables and Figures

The function $(8)
Results for HITACHI problem
Problem Statisticso
Two-Phase Algorithm—Comparison of Scaling versus Nonscaling
Two-Phase Algorithm—Unscaled with UBBasis
Two-Phase Algorithm—Scaled with UBBasis
Two-Phase Algorithm—Unscaled with SBBasis
Two-Phase Algorithm—Scaled with SBBasis
Weighted Objective Algorithm—Unscaled with UB Basis
Weighted Objective Algorithm—Scaled with UB Basis
Weighted Objective Algorithm—Unscaled with SB Basis
Weighted Objective Algorithm—Scaled with SB Basis

Weighted Objective Algorithm—Comparison of Scaling versus Nonscaling
Weighted Objective Algorithm—Comparison to TwoJ§
Markowitz Cntenon——ﬁnscaled with UB Basis
Markowitz Criterion—Scaled with UB Basis Ce e
Markowitz Criterion—Unscaled with SB Basis
Markowitz Criterion—Scaled with SB Basis

Markowitz Criterion—Comparison of Scaling versus Nonscalmg
Markowitz Criterion—Comparison to Two-Phase Algorithm .

Self-Dual Algorithm—Unscaled with UB Basis

Self-Dual Algorithm—Scaled with UB Basis .

Self-Dual Algorithm—Unscaled with SB Basis

Self-Dual Algorithm—Scaled with SB Basis
Self-Dual Algorithm—Comparison of Scaling versus Nonscaling

Self- Dual Algonthm Comparison to Two-Phase Algorithm
Self-Dual Algorithm Normalized Variant—Unscaled with UB Basis
Self-Dual Algorithm Normalized Variant—Scaled with UB Basis . .
Self-Dual Algorithm Normalized Variant— Unscaled with SB Basis . .
Self-Dual Algorithm Normalized Variant—Scaled with SB Basis
Self-Dual Algorithm Normalized Variant—

Comparison of Scaling versus Nonscaling

Self-Dual Algorithm Normalized Variant—

Comparison to Two-Phase Algorithm .

Self-Dual Algorithm Normalized Variant—

Companson to Self-Dual Algorithm . .

Self- Dual Algorithm Fixed Variable Variant - Unscaled with UB Basis
Self-Dual Algorithm Fixed Variable Variant - Scaled with UB Basis
Self-Dual Algorithm Fixed Variable Variant - Unscaled with SB Basis
Self-Dual Algorithm Fixed Variable Variant - Scaled with SB Basis
Self-Dual Algorithm Fixed Variable Normalized -

Unscaled with UB Basis . o : v
Self-Dual Algonthm Fixed Variable Normalized Scaled with UB Basis
Self Dual Algorithm Fixed Vanable Normalized Unscaled with SB Basis
Self Dual Algorithm Fixed Variable Normalized Scaled with SB Basis
Self Dual Algonithm Fixed Vaniable Variant

Companson of Scahing versus Nonscaling

Self Dual Algonthm Fixed Varnable Normalized

Comparnson of Scaling versus Nonscaling

hase Algonthm .

.48

. 4R
.50
.50
Y

r

-5l

[S3]

52

A3
R

%

| List of Tables and Figures

Table 7.2.11 Self-Dual Algorithm Fixed Variable Variant—
Comparison to Two-Phase Algorithm 54
Table 7.2.12 Self-Dual Algorithm Fixed Variable Normalized—
Comparison to Two-Phase Algorithm 54
Table 7.2.13 Self-Dual Algorithm Fixed Variable Variant—
Comparison to Self-Dual Algorithm 55
Table 7.2.14 Self-Dual Algorithm Fixed Variable Normalized—
Comparison to Normalized Self-Dual Algorithm 55
Table 8.1.1 Performance Factors for Iteration Counts 57
Table 8.1.2 Performance Factors for CPUTimes 58
Table 8.2.1 Sensitivity Analysis Results 59
Figure 8.2.2 CPU Times for sitivity Analysis 60
v
AN B I N N R N N A N R R e R IR

Section] Introduction 1

Section 1. Introduction

Since the simplex method was discovered by Dantzig in 1947, it has remained the
method of choice }())r solving linear programs. It is used every day by people from many
different fields and in many different applications. While other methods have been pro-
posed in the past for solving linear programs, none were shown to perform consistently
as well as the simplex method (see, for example, Hoffman, et.al., 1953). Recently, how-
ever, new methods have been proposed based on Karmarkar’s (1984) discovery of a new
polynomial-time algorithm for linear programming, and they are posing serious challenge.
In comparing the performance of these algorithms with the simplex method, there is an
implicit assumption that the simplex method is an explicit algorithm, whereas, in practice,
there are many variants. The purpose of this study is to compare the variants to see if any
one variant can be said to be the best in some sense and could be used as a standard for
comparison with non-simplex algorithms.

While many variants of the simplex method have been proposed, systematic studies
of their effectiveness have not appeared in the scientific literature. This study is limited
to a certain class of variants of the simplex method, called composite simplex algorithms.
This report contains computational comparisons of some composite simplex algorithms,
and emphasis is placed on making the computational experiments replicable by other
researchers.

Section 2 defines the class of composite simplex algorithms and describes a generic
simplex algorithm and a framework whereby all the composite simplex algorithms are
implemented. Section 3 discusses the various options that are available when one solves a
linear program on a computer. The influence of these options must be understood when
making computational comparisons of variants of the simplex method. The results for the
standard two-phase algorithm are presented here.

Section 4 discusses the weighted objective algorithm. Section 5 analyzes the Markowitz
Criterion. In Section 6, Dantzig’s self-dual parametric algorithm is presented. Some vari-
ants of the self-dual algorithm are prescntecfin Section 7. In Section 8, the computational
results are analyzed and suggestions for further research are offered.

The following general inferences can be drawn from the very extensive systematic
trials made in this study:

1. Almo;t every variant performed remarkably well on some problems and very poorly
on others.
2. No variant stood out clearly as the best on all problems.

i S TR T JR SN N J

‘-
~
)
-
.

2 Section 2. The Linear Programming Problem

Section 2. The Linear Programming Problem

In this section, the general linear programming problem is discussed. A “generic”
simplex method will be described in a way that serves as a framework for describing various
variants. The mathematical programming system MINOS (Murtagh and Saunders, 1983),
suitably modified, was used in the experiments on test examples in this study. A description
of how MINOS solves linear programs is therefore given. Finally, the “MinSumlInf” ratio
test is discussed as an alternative ratio test which can be used in some methods.

2.1 The MINOS Standard Form

A linear program can be described as the minimization or maximization of a linear form
z = ¢Tz over a linear constraint set. Each of the constraints in this set may be an equality
or an inequality constraint. After a linear program is formulated mathematically and
numerical values assigned to its coefficients and right-hand side, these values are placed in
an input file in a prescribed format in order for a computer to solve it. Once the data is
read into the computer, the next step is to translate it into an equivalent form for internal

use by the computer program. An algorithm is then used to solve the linear program. In
the case of MINOS, the form

minimize ¢’z
subject to [A I|z =0, (2.1)
I1<z<u

is termed the The MINOS Standard Form.

To maximize z, the user can minimize —z and obtain the same optimal solution z.
Henceforth, it is not restrictive to assume that the objective function is being minimized.
The number of variables is denoted by n, and the solution is then given by some = € R".
Each variable z;, j = 1, ..., n is termed a decision variable and can have a lower bound
l; and an upper bound u;. Some of these bounds may be ~oo and/or +00, respectively.

The number of constraints in the problem is denoted by m. Each constraint is de-
scribed by a vector a; € R" and two scalars, b; and r;. In the MINOS manual (Murtagh
and Saunders, 1983), b; is termed the right-hand side and r; is termed the range. The '
constraint is then

b,"FT.'SG.-TISb,' if r;<0,
biSaTszi+ri if ri>0.
Note that if r; = 0, the constraint is of the form a?':c = b;; if r; = 400, the constraint is

of the form alz > &;; if r; = ~o0, the constraint is of the form a7z < b,. Given these m

constraints, m slack variables, z;, j =n+1, ..., n+ m, can be added to transform each

of the constraints into equality constraints. This is done by setting z,4; = —a;rz, 1=1,

..., m, and placing lower and upper bounds on z,,, that were previously on a’z. Hence
the linear program has been converted to the form (2.1). Now z € R"*™ and there is no
need to treat differently the slack variables and the decision variables of the problem, since
each z; is considered as a column of the large matrix {4 I'] with a cost coefficient ¢; and
lower and upper bounds [; and u;.

"2t 19" 214" At W WA I W M S W WAL EU I L WL B . i o) WL W T\ 3 N A PU T Iy g o v, 54 ot

Section 2.3 An Outline of MINOS 3

2.2 A Generic Simplex Method

The simplex algorithm as described by Dantzig (1963) (and in earlier references) is ap-
plicable to linear programs that have an initial primal feasible basis. In order to find an
initial basis, a “Phase I” procedure was devised. This procedure sets up a linear program
which could be solved by the simplex algorithm, and which yields a primal feasible basis
or a verification that the problem is infeasible. If the problem was feasible, the simplex
algorithm could be used again to find an optimal solution (“Phase II”). The combination of
first finding a primal feasible basis by the simplex algorithm and then finding the optimal
solution by the same algorithm is collectively known as the simplex method. This fine
distinction is made here to clarify the differences between the simplex algorithm and the
simplex method.

Since 1947 when Dantzig proposed the simplex algorithm, many variants of the method
and algorithm have been proposed. Some of these variants are listed in Dantzi{g’s book
(1963). These variants have a common framework, which can be described by the following
proto-algorithm:

Comment Let B be a basis for [A I].
while not optimal(B) do
begin
g, g} « indices of {incoming_column, eziting_column};
omment Column g of [A I]is the same as column r of B.
pivgt(B, 5,¢,7);
en

The boolean function optimal(B) returns true if B is both a primal and dual feasible
basis. The procedure pivot(B,s,q,r) assumes that z, is the r** basic variable. Column

s of [A4 I] replaces the r** column in the basis, which is the same as column g of [4 I].
This procedure usually updates a factorization of the basis B. The order of execution
of the functions tncoming_column and eziting_column determines which simplex variant
is being executed. In the case of the primal simplex algorithm, the steps (called pricing
out) for deciding which column is to be the incoming_column are executed before the steps
(a primal ratio test) for deciding which is to be the eziting_column. In the case of the
dual simplex algorithm, finding the eziting.column (determining the basic variable with
the most infeasibility) is done before finding the incoming_column (a dual ratio test). As
will be seen later, some algorithms may change the order of the two processes depending
on the status of the current iteration. Furthermore, the actual algorithms that define the
functions sncoming_column and eziting_column may change as iterations progress.

2.3 An OQutline of MINOS

In order to understand the implementations of the various algorithms studied in this study,
it is necessary to understand the subroutines that MINOS uses to solve linear programs.
For ease of discussion, the names that were given to subroutines in MINOS have been
changed to a mnemonic that reminds the reader of the subroutine’s purpose. After read-
ing in the problem specification and converting the problem to MINOS standard form
(subroutine input), a starting basis is determined. A basis is easily obtained from the
matrix (4 I] by choosing the slack variables. As discussed in Section 3, it is usually more
efficient to determine an initial “crash” basis to begin the simplex method (subroutine
crash). Each nonbasic variable is initially set to be equal to one of its bounds. B denotes
the index set {j;,72....,7m} of the basis. The order of the basic columns is important and
is indicated by an integer vector B,, 1 = 1, ..., m where B; = j indicates that z; is the

i*® basic variable. Given the initial basis and the initial states of the nonbasic variables,
MINOS executes the following loop until termination:

- - -

PR IR B
e A

.........

4 Section 2. The Linear Programming Problem

procedure primal_simplez;
finished — false;
while not finished do
begin
if meoi.s.factom'zatitm(B’)l then factorize(B);
if infeassble_basis(B) then é«—d else é—c;

FindPI: Solve xTB = &, for =;

PriceOut: Find s such that z, has minimum reduced cost G,

o;;timal — &, 20;
if not optimal then

Represent: Solve Bp = [A I)., for p;

RatioTest: Find r such that z,s, blocks the change in z,;

unbounded — r =0
if not unbounded then
begin

— Br;

Update: Update value of z;

pi'mt(B’ 9 7‘);
end;
end;
infeasible — infeasible_basis(B) and optimal;
ﬁni&shed +~ optimal or unbounded or infcasi};lc;
end;

The boolean function needs_factorization(B) is true if the basis needs to be refac-
torized. A number of circumstances can contribute to this condition. MINOS has a
FACTORIZE FREQUENCY option, which determines the maximum number of updates to B
that can be done before refactorizing the basis. This number defaults to 50. MINOS will
also refactorize the basis if the size of the current factorization has increased significantly,
or if there is insufficient storage to update the factors. Because of the modular nature of
the MINOS code, the conditions influencing refactorization are external to the variants of
the simplex method that are being considered. Furthermore, the subroutine factorize(B)
and the routines that solve the equations 77TB = ¢ and Bz = b can be treated as a pack-
age; the results of using this package do not influence the paths generated by the different
variants of the simplex method. MINOS uses a sparse LU factorization of the basis. The
implementation is sufficiently modularized that the factorization and solve routines can be
replaced by some other equivalent scheme of maintaining the factorization of the basis, if
so desired.

The boolean function infeassble_basis(B) is true if the current basic solution indicated

by B is primal infeasible. The vector d € R"*™ is defined element by element as

1 if z; > uy;
d)' =4¢ -1 if z; < I)';
0 otherwise

and represents the Phase I cost form used when the problem is infeasible. Note that if r,
is nonbasic, then d; = 0, since each nonbasic variable is always equal to one of its bounds.

. PR

»

RPN AR EAR Y O Y AN AN RN U AR AR SR L OCRATSUe) U2 a%2 408 a'g 2¢8 4 R PR R AR AT AR AR KR gt @] o 4'a §

Section 2.3 An Outline of MINOS 5

The Phase I objective vector d changes on each iteration, depending on which variables are
infeasible. Once a variable is feasible, the ratio test prevents the variable from becoming
infeasible. The objective in Phase I never increases since MINOS chooses incoming vari-
ables based on the cost form w = dTx. However, because the sum of infeasibility changes as
a function of the incoming variable, it is possible for this sum to increase. MINOS always
insures that if the sum does increase, the number of infeasibilities will decrease, which is
enough to prove convergence.

After determining the objective to minimize and solving for prices #, MINOS chooses
an incoming variable z, by computing the reduced costs of the nonbasic variables and
picking the variable with the minimum reduced cost. The reduced cost ¢; is defined for z,
nonbasic as

&= éj—ﬂT[A I].j if.tj:lj;
4 —(éj - ﬂT[A I]J) if Ty = Uy.

It should be noted that MINOS does not save the values of the reduced costs as they are
computed, since these values are only needed to determine the index s of the incoming
variable. This facilitates the use of partial pricing schemes, which are discussed in Section
3.

The next step in the simplex method is a ratio test. In order to do this, a direction
vector for modifying the current solution z is determined by solving the equation Bp =
[A I'].,. The vector pis the representation of the incoming column in terms of the basis B.
The components of r except for z4 and r, are not changed. The dimension of the vector
of basic variables z, is expanded by one to include z,, so that £ = (z4,z,). The direction
of change of Z is p = (p,t), wheret = 1if z, = u, and t = -1 if z, = [,. To make the
ratio test easier to implement, let B,,4+1 = 3. The ratio test determines the maximum 6
such that # — 8p is feasible. Specifically,

z; — g,
_'___'_ if pi > 0;
b=, 1min+1 u p‘x‘
=1l....m ;T] . -
' 2 if pi < 0;
=D

Given 6, the value of the basic variables can be changed using the formula z, « z, — 6p.
If £, is the blocking variable, then B, and B4, are interchanged as well as 7, and To,, .0

If r = m+1, then the variable z, has moved from one of its bounds to the opposite bound,
and no update of the basis is necessary.

...

[T P

Y

BRI

LAALS.

-

7,

s

AN NN

YNy v -l"

6 Section 2. The Linear Programming Problem

2.4 The “MinSuminf” Ratio Test

' The standard ratio test described above has computational complexity O(m). As an
8 alternative to this ratio test in Phase I, Greenber§ (1978) described a primal ratio test
k which has come to be known as the “Dennis Rarick” ratio test, since he implemented it in
WHIZARD (see MPS-III (1975)). Wolfe (1961) described this ratio test as an “extended
composite algorithm,” but his use of the word “composite” has a different meaning than
that defined in the next section. Because of the lack of suitable references, it is not clear
: from the literature whether Rarick or Greenberg were aware of Wolfe’s earlier work.
; It is easy to prove that the function measuring the sum of the infeasibilities of the
current basic variables over the range of the incoming basic variable z, is convex. The key
_ idea behind the ratio test is to choose the outgoing variable associated with the value of z,
' that minimizes this function. Without loss of generality, we may assume (by translating
the variables and reversing sign, if necessary) that all the variables have lower bounds [= 0
) and upper bounds u = +00. Unrestricted variables with infinite lower and upper bounds
are ignored. After selecting the incoming variable z, and finding the representation p of
the incoming column, the value of z, is increased from 0 to some value 8 while the values of
the basic variables z4,,1 = 1, ..., m are changed according to the formula z,, « zs, —6p.

To simplify the notation, let 8; = zs,, and a; = p;. For 8 > 0, the function which
computes the sum of the infeasibility of the basic variables can be written as

S(8) = —imin(o,ﬂ.- - ba;).

=1

! As a function of 6, this function is piecewise linear and convex. An example is shown
in Figure 2.1. The function has breakpoints ¢; = f;/a; where the slope w;(8) = Si(6)
" changes. The “MinSumInf” ratio test searches for the ratio ¢; that minimizes S(6). Let
| w; be the left derivative and w} be the right derivative at t;. Note that w} = wj,, for
t=1,...,m—1. Since S(8) is convex, w; < w}. The minimum of the function occurs at

6 = t; where w; <0 and w} > 0. If both ¢; and t;+, tie for the minimum, ¢; is selected.
Greenberg’s algorithm to minimize S(8) involves sorting the sequence t;. Under a sim-
ple computational model, it can be shown that at least O(nlogn) comparisons are needed
to sort this sequence $Aho, Hopcroft, and Ullman, 1974). However, the methodology of
, Megiddo (1983), who found a linear-time algorithm to solve linear programs when n = 2,
can be used in the “MinSumlInf” ratio test in order to develop a linear-time algorithm to
X find the t; that minimizes S(8). The latter, however is difficult to implement, and is only
. applicable to a two-phase method. For these reasons, this ratio test was not considered in
this study.

..
...................

................
...

e A s A L

Section 2.5 Composite Simplex Algorithms 7

Sum of
infeasibility
S0)

4 ty ts 0

Figure 2.1 The function S(8)

2.5 Composite Simplex Algorithms

In most mathematical programming systems today, the simplex method is used with the
Phase I/Phase II procedure described earlier. Ordinarily, the Phase I linear program has
multiple optimal solutions, since every feasible solution for the original linear program is
optimal in Phase 1. This fact would lead one to believe that the Phase II procedure could
begin at a vertex very far away from the optimal vertex. This was observed early on by
many who worked on the development of the simplex method; these investigators invented
numerous composite simplex algorithms which combine in various ways the reduction of
primal and dual infeasibility, until zero is achieved for both. Essentially, these composite
algorithms try to use information about the objective function ¢’z while finding an initial
feasible point.

Finding an optimal solution of the primal linear program involves among other things
finding a feasible solution to the dual linear program. As most of the methods progress, the
prima%and dual systems play a game of “Tug-of-War.” At any primal infeasible point, it is
impossible to know whether the current objective value is below (superoptimal) or above
(suboptimal) its optimal value. If the point is suboptimal, an improvement can often be
made which will simultaneously reduce the amount of infeasibility and decrease the value
of an objective function (perhaps going below the optimal value of the objective). At a
superoptimal point, a reduction in ‘e amount of infeasibility often can only be made by
increasing the value of the objectivc function. However, some superoptimal points have
adjacent vertices which can reduce infeasibility and improve the value of the objective
function. At such a point, movement to such an adjacent vertex looks promising, but one
is deceived by the local improvement criterion of the simplex method. In this case, the
adjacent vertex is improving the value of the primal objective function while increasing
the amount of dual infeasibility. It is in this sense that we say that the primal and
dual feasibility conditions are “tugging” at each other. The various composite algorithms
attempt to act as the referee between trying to satisfy the competing primal and dual
feasibility conditions.

e ol

NNV AR ERERE KA R AR RO T oY >g ave &~ EFXNUNENL U WA UL OV Uy wry

8 Section 3. Computational Testing Methodology

Section 3. Computational Testing Methodology

In the course of making computational comparisons of various variants of the simplex
method, it is important to recognize that many factors can contribute to the overall perfor-
mance. MINOS allows the user to select from a number of options, and the ones used must
be carefully chosen. In this section, these options and their effects on the computational
testing are discussed. In order to reduce the amount of variability in performance due
to the options chosen, the options used were fixed in such a way as not to influence the
performance of any specific algorithm at the expense of another competing algorithm. In
:.ihis sect;on, previous studies on computational testing of the simplex algorithm are also

iscussed.

3.1 Practical Experierice with the Simplex Method

The question of just how efficient the simplex method is has existed since its proposal
in 1947. Interestingly enough, in spite of the long interest in its efficiency, the amount
of serious scientific testing of the algorithm appears to be quite small. Shamir (1986)
provides an excellent summary of results that have appeared in the literature pertaining
to the performance of the simplex method; the interested reader should refer to his work
for references. Shamir states:

“The experience accumulated during the last three decades on the behavior of
the Simplex Method is undoubtedly vast. However, there is surprisingly little
documented evidence on this experience in the scientific literature. One prosaic
explanation may be that practitioners usually do not keep record of parameters of
the solution process for the problems they solve (since they are interested mainly
in the result), and if they do they seldom report on this record in the scientific
literature.”

With regard to many composite simplex algorithms that have been proposed, no systematic
study seems to exist in the scientific literature of their efficiencies.

The earliest experiments with the simplex method were performed by Hoffman, Man-
nos, Sokolowsky, and Wigmann in 1953. At the time, they were comparing the simplex
method to other non-simplex methods for solving linear programs; they found the simplex
method to be superior. Dantzig has remarked that their work provided the impetus to
perfect the simplex method. If their results had not been favorable, it is possible that
other 'methods would have been perfected and the simplex method would not be in use
today!

In 1963, Wolfe and Cutler experimented with nine “real” linear programming prob-
lems, which were submitted to them by practitioners of linear programming at the time.
They compared different pivoting rules for the simplex method; their conclusion was that
the original ‘most negative reduced cost’ rule, in spite of the fact that it is dependent
on the scaling of the variable, did as well as the other alternatives. It may be one of
the reasons why it is used in most codes today. The most-negative reduced cost rule has
its origins in problems with a convexity constraint. In such problems, an argument can
be made for choosing this rule. Why it appears to work well in practice without such
a constraint is a mystery and may be due to practitioners choosing units for competing
activities consistently (See Dantzig (1987) for further discussion). Since the Wolfe-Cutler
study, no serious computational comparisons of simplex variants on real-world problems
have appeared in the scientific literature.

In contrast to using “real” problems for testing, there has been much work done
using randomly generated problems. In the early sixties, Kuhn and Quandt (1962) were

-t ay,

tagt

ST U U U U U DV O U AT DR RO U R P O R IO AR AN R A RN R I *at -

Section 3.2 The Crash Basis 9

the first to conduct a series of experiments comparing the performance of many different
pivoting rules on randomly generated problems. Other authors followed with different
experiments, usually changing some aspect of the probabilistic model. Because of the
stochastic nature of these experiments, the statistics computed can give some insight on
the average performance of different variants. But, as discussed later, it is not clear that the
performance of the simplex method on such problems is representative of the performance
of the simplex method on the variety of real-world problems that are solved every day by
linear programming practitioners.

3.2 The Crash Basis

Like most linear programming systems, MINOS provides the option of finding a crash basis
as the initial basis to start up the simplex method. The key idea is to rearrange the order
of the rows and then select a lower triangular basis using columns from the original input
matrix A. It should be noted that columns from the slack variables can always be used
to keep the initial basis lower triangular. In fact, if A were totally dense, then only one
column would be chosen from A, with the rest of the columns being chosen from the slack
variable matrix I. MINOS also selects columns so that each diagonal element of the crash
basis is reasonably large relative to the other elements in the same column, in order to
prevent the initial basis from being ill-conditioned.

There seem to be some good reasons to begin with a crash basis, as opposed to the
basis consisting entirely of slack variables. To understand these reasons, the concept of
Hamming distance is useful. Let J; and J, be two sets of indices of basic variables. Then
the Hamming distance is defined as

h(Jy,J2) = 1Ny U Jy] = |1 N Ty

In other words, h(Jy, J;) is the minimal number of pivot steps (ignoring feasibility) required
to move from the basis corresponding to J; to the basis corresponding to J,. It provides
a useful lower bound on how close a specific basis is to another basis, in terms of number
of pivots of the simplex method.

In most linear programs, the number n of original columns is larger than the number
m of rows. Hence, if all variables (decision and slack) have equal probability of being in

a specific basis B, the probability of the i** basic variable in the basis B being a decision

variable (as opposed to a slack variable) is —2— > 1. Hence, the expected number of
p m+n 2 p

decision variables in the optimal basis should be larger than the expected number of slack
variables in the optimal basis. Therefore, choosing a crash basis from the set of original
decision variables should keep the initial Hamming distance between the crash basis and
the optimal basis lower.

On the other hand, if we consider the probability of a certain variable r, being in
the optimal basis, with all bases being equally likely, a different analysis is required. Since

there are ("?™) possible bases, and ("*™~!) bases which do not include r,. the probability

of z, not being in a random basis is ;7. Hence, the likelihood of r, being in a randomly
1

< 3. So choosing a specific r, to be in the crash basis may be

m
n+m

chosen basis is
disadvantageous.

However, many slack variables correspond to equality rows. and therefore cannot
be in the optimal basis unless redundancies among the constraints exist, or in certain
degenerate situations. Furthermore, in formulating linear programs. there is a tendency
to write inequality constraints, a good proportion of which are expected to be tight at
the optimal solution so that their corresponding slack variable will most likelv not be in

O
WP R A R SOty

£ a8 v

£ 0 9 8 31

10 Section 3. Computational Testing Methodology

binding in the optimal solution, then the optimal basis may contain more slack variables
than decision variables. In most problems, the former seems to be the case. With these
considerations, all the experiments in this dissertation were done using the CRASH BASIS
A option of MINOS to initiate the various algorithms.

3.3 Scaling

MINOS offers a SCALE option when solving a linear program. This option will take the
original input of the problem and attempt to make the coefficients of each column and row
as close to 1 as possible. This is done by choosing two nonsingular diagonal matrices R and
S to respectively multiply the rows and columns of the problem. The values of the elements
of A, ¢, 1, and u are modified. The algorithm used in MINOS is described by Fourer (1982).
The most immediate advantage of using the SCALE option is in controlling any numerical
difficulties that may occur in a specific problem. Scaling is theoretically attractive because
it makes certain selection rules scale free. Appealing as it is on theoretical grounds to be
scale free, nevertheless, it is not clear how scaling affects the performance of the simplex
algorithm or its variants. This is apparent from the computational results in this study.
Badly scaled linear programs seem to be an evil that those who develop software to
solve practical problems must contend with. Quite often practical models contain con-
straints that implicitly must convert the units used in one constraint to the units used
in another. For example, if z, is a variable whose unit is millions of dollars, and z; is a
variable whose unit is dollars, then a constraint that adds z, and z; would be similar to

! the optimal basis. On the other hand, if the problem has many constraints which are not

z, +10%z,; < 10.

It is clear that such constraints can cause bad problems with regard to numerical accuracy.
Scaling often helps remove some of these effects.

It is easy to see that scaling a problem can change the path of the simplex algorithm. If
a column j is multiplied by p, then the reduced cost of that column will be pé¢,. Therefore,
the choice of incoming column used by the ‘most negative reduced cost rule’ could change
if the units of a variable were changed by the user at the time of formulating his linear
program.

sThe scaling algorithm is executed before a crash basis is determined. Scaling. of
course, does not aftect the sparsity pattern of a linear program. Because the numerical
values in the constraint matrix A influence the choice of columns for the crash basis, scaling
can change the starting basis and therefore comparing the results of solving with the SCALE
YES option with the results of solving with the SCALE N0 option will not isolate the effects
of scaling alone. If the two crash bases generated are labeled as the “unscaled basis™ and
the “scaled basis,” these bases can be used as either the starting basis for either the scaled
or unscaled, problem, respectively. Hence. for a specific problem and a specific algorithm,
four variations can be considered, and the experience gained from running each algonthm
under al] of the variations can be used to compare the effects of scaling by removing any
variability in the different starting bases. For notational convenience. the unscaled crash
basis wilf’ be notated as UB and the scaled crash basis will be notated as SB. In all
problems except AFIRO, these bases were different.

In order to generate the scaled basis for the unscaled problem and the unscaled basis for
the scaled problem, the two initial bases for each problem were saved using the PUNCH option
of MINOS. When each problem was solved, the scale option was set in the specihcations
file, and the appropriate crash basis was read in using the INSERT option When the UB
basis was used with the unscaled problem. and the SB basis with the scaled problen:.

LA AR R Y S L e ye et e “e N e te Y fe . et e e -y v, e g I e e e .
WV \\\-‘.‘»\\5 %‘-..-‘,.-.. IR AR R T A N A DA R SRR PR Ty A

v o

~

\:._ o

Section 3.4 Tolerances 11

the bases were not read in from their files, but were generated by the code at runtime.
As explained later, the extra CPU time for these extra computations was recorded and
adjustments made to correct the running time statistics generated by the experiments.

3.4 Tolerances

If a linear program is solved using rational arithmetic, the solution will satisfy the equations
[AIlr =0and ! < z < u exactly. Furthermore, the conditions for optimality of the
nonbasic variables ¢; > 0 will also hold. However, MINOS uses floating-point arithmetic,
and it is not practical to obtain exact solutions to the primal and dual systems. It is
necessary, therefore, to specify tolerances for infeasibility of the probiem.

MINOS provides a FEASIBILITY TOLERANCE option. If t; is this tolerance, then a
solution z is said to be feasible if

-ty <z,<u,+¢

for each j = 1, ..., m 4+ n. Since these equations include the slack variables, the linear
constraints are also satisfied to this tolerance t;. For MINOS, the default feasibility tol-
erance is ty = 10~%. For all of the experiments done, the default feasibility tolerance was
used.

A second tolerance is the OPTIMALITY TOLERANCE. This is related to the dual feasibility
of the problem. If t4 is this tolerance, then the solution is declared optimal if

S > —ty.
li=l

(To ave 4 division by zero, the value in the denominator is actually max(1. %).) Dividing

by th 1orm of » makes the test independent of any scaling of the objective function. The
defa: value of the optimality tolerance is t4 = 107% This value was used in all the
computational tests.

The third tolerance that is important when solving linear programs is the PIVOT
TOLERANCE. This tolerance is used to prevent columns from entering the basis if they
would cause the basis to become almost singular. If this tolerance 1s denoted t,. then a
row 1 in the ratio test will be rejected if

i <ty

2

The default pivot tolerance for MINOS 1s t, = ¢!/? and was used throughout all the testing

Here € 1s the measure of machine precision: t, was approximatels 107! on the machine
used 1n the experiments.

In order to maintain the “equahty™ of the hnear constramnts (A [r = 0. a numern al
test 1s done on every k'™ iteration. where k 1~ the CHECK FREQUENCY If the largest com
ponent of the residual vector r = (4 [;1 1s determined 1o be too large 1as determined by
ty and i'rli. a larger error 1s allowed f Tlr:i 15 large). then the basis s refactonzed and the
basic vaniables are recomputed by a speaal algorithim to satisfy the hinear constramts more
accurately. The default value of & = 30 was used i1 ali testsan this dissertation o each

test . the check never caused a refactorization

RS LG C g S G
o, v

12 Section 3. Computational Testing Methodology

3.5 Pricing

In determining a variable z, to enter the basis, the simplex algorithm chooses s such that
é, is minimal. Since ¢ is not needed elsewhere in the execution of the algorithm, it is
efficient to compute ¢, for each nonbasic z, for j = 1, ..., n + m, while keeping track
of the minimum ¢, found so far. This combined procedure is known as pricing out the
nonbasic variables. The fundamental calculation is to compute

g9, =¢,-="|AlI],
for each column. If z, = I,, then ¢; = g;; otherwise, r, = u, and ¢, = —g,. If ¢, > 0 for
all 7, then the current solution to tixe linear program is optimal.

The expense of pricing a specific column is directly related to the density of that
column. If z, is a slack variable, then g, = —x,. If the j** column in A has k, nonzero
elements, then only k, multiplications are needed to compute g,. To actually compute s
such that é, is minimal requires one to price out all the columns of A. For convergence of
the simplex algorithm, any s will do provided é, < 0 on each iteration. It has been observed
empirically that sweeping through the j = (1,...,n) in batches and optimizing over each
batch can reduce CPU time dramatically in many applications. Hence, this scheme, called
partial pricing, 18 used in most commercial linear programming systems. In particular, the
PARTIAL PRICE option of MINOS allows the user to specify a value p so that the m + n
columns for the decision and slack variables are dividej equally into p batches, A, and I,
for k=0,..., p— 1. A tolerance parameter, t; > t,, is set for each sweep through each
group, and it is reduced dynamically on each iteration. If the previous iteration found an
1, such that ¢, < 0 for some ; in the k'* group, then the next group searched is 4,,,.
In4y (When k + 1 = p, then the next group searched is Ay, Iy). If no j is found in this
group such that (¢é,/]|x]|) < —t4, then the next group (k + 2) (with provisions for recycling
back to zero) is searched. If all groups are searched and no candidate is found. t; > t, s
reduced, unless {, is already as small as t . in which case the current solution to the linear
program is declared optimal.

The partial pricing scheme described above will most likely reduce the amount of
nricing out and hence the average amount of computation done per iteration, but may
increase the number of iterations necessary to find tﬁe optimal solution, because the “best
candidate” (in terms of minimal ¢,) may not always be chosen on each iteration. There
18, therefore, a tradeoff that the user of a linear programming system must make. and 1t
is not clear what rule one should use to choose the value of p. In the MINOS manual. 1t
1s recommended that for time-stage models with t time periods, the user should choose
p =1t. The example below shows that this may not always be optimal.

The problem HITACHI was described as a 48-period model by Nishiva and Funabash:
(1984). Brady (1986) wrote a program and used it to generate an MPS deck for this maodel
MINOS 5.0 was then used to solve this problem on an IBM 3051 using different partial
price options. The size of the problem was quite large. with m = 1008. nn = 1632 and 374!
nonzero elements in A. All the options of MINOS were set to their default mode exceps
the PARTIAL PRICE option. which was varied from p = 1 to p = 48 The results are showy,
in Table 3.1.

It 1s interesting to note that as p increased from | to 8, the number of iterations an!
the total CPU time decreased. For p > 5, both iterations and CPU time increased with
except for p = 16. The outlyer at p = 16 indicates that 1t 1s difficult to predict the resyir-
of varving p. 1t is also interesting to note that while HITACHI has 4» time penods p s
was not the best choice

Section 3.6 Random versus Real-World Problems 13

"Partial Price | Number of | CPO Time |
Option Iterations | (Seconds) |
| 7190 Wl’
2 791 21.10
4 781 19.72
(1 781 1932
8 770 18.77 !
12 807 19.17 y
16 799 18.93
24 822 19.45
48 879 20.47
Table 3.1 Results for HITACHI problem ‘

This example demonstrates (and this is true for many others) that how to choose p to
minimize the running time of solving a linear program is not obvious. Hence, for all other
results in this study, the PARTIAL PRICE option of MINOS was not used, and the default
choice of p = | was set by the program. In later sections, there will be discussion on how
partial pricing could possibly be used to reduce the running time of different algorithms
implemented ierein‘

3.6 Random versus Real-World Problems

When comparing algorithms for linear programming. it i1s necessary to determine whether ;
randomized or real-world problems will be used. Up to now, no one has been able to ‘
create a random model that generates problems that are representative and as varied as

those encountered in practice. A number of characteristics seem to be inherent in real-

world problems, but are difficult to capture and model stochastically. We can, however,

comment about some of their properties.

I Sparsity. Most real-world problems are sparse. Typically. they are sparse because if X
thev were not. they never would be formulated it would require too much effort on
the part of the model formulator to collect the data for a dense matnx. For example.
specifving 100 percent of a 1000 by 2000 dense matrix would require the input of 2
million nonzeros. Thus sheer data collection effort on the part of the user seems to
be the main reason that linear programs that we encounter i1n practice are sparse
Another reason is that even if dense models were formulated. thev probably could not
he solved Sparaity s usually measured by the density d = -5 of the m.n matnx A,
which 1s assumed to have ¢ nonzero entrnies

Structure and near triangulanty of the basis In problems where submatrices corre
spond to interactions between two different sets of technologies many of the technolo
gies are independent and hence the corresponding elements are zero, vielding large
sparse blocks in 4 Indeed. there appear to be a great vanety of structures encoun
tered n the sparsity patterns in real world probiems Thas s apparent i time staged
and multy staged hinear programs. which are often desonbed as stamrrcase i structure
Fhere may be speaal structures witho the blocks of a staircase strncture Networks
are another general ddass These also may have sparsity patterns within the network

te

LR A RO - ., I o .
" VY DRI, W, RIS "i'n AT ORI U, ST, oy

P e T U R W N S W e

14 Section 3. Computational Testing Methodology

which are specially structured. One approach to solving large-scale linear programs

is to exploit special structures, as has been done by Fourer 5982) A difficulty with

this approach is that there appear to be enough sf;ght differences in structure from
roblem to problem that no cﬁaucteristic attern among them is readily apparent.
fn the course of solving a linear program Ey the simplex method, one can usually
rearrange the rows and columns of the various bases encountered so that they are
nearly triangular. Near triangularity makes it a relatively inexpensive operation to

h represent the basis as a product of lower and upper triangular matrices and preserves

much of the original sparsity from iteration to iteration.

3. Degeneracy. Random models, with probability one, do not have degenerate vertices,
while most real-world problems typically have many degenerate vertices. Recent work
by Krueger (1986) has analyzed the effects of degeneracy in random polyhedra. when
such degeneracy can be included among the randomly generated models. He found
that as n increases, the limiting behavior of the average perforimnance of the simplex
method does not change when the number of degeneracies and m are fixed. Degeneracy
occurs in practice because modellers tend to overspecify a problem. thereby generating
redundant constraints. Furthermore, models tend to have constraints that convert
one variable into a sum of other variables: this can cause degeneracy. For example,
degeneracy can occur in practice because modellers include technologies which have a
number of activities wholly dependent on whether a particular technology is used or
not. These can have constraints linking them. If the technology 1s not used, each of
these constraints will generate a basic variable with value zero.

4. Unit Elements. Many of the nonzero elements m the constraint matrix 4 of most
real-world problems have values of +1 or -1 This often happens because many of
the constraints are “bookkeeping™ constraints that a modeller puts i to tind the sums
of certain vaniables. If r| represents the amount invested in some activaty, then some
constraint will add r; 1o its sum while another constramnt will subtract 2| from its
sum. The column will then have two nonzeros. 10 and 1 0. which occur in the
rows corresponding to mputs and outputs that r; affects Such relations are fairly
common in models and are used to summanze the results of models 10 vanous ways.
Spreadsheets are very popular because they express the same kind of relations in a
convenient format of two-way tables that allow easy horizontal and vertical addition.

5 Feasibility Most models for randomly generating problems are dehberately primal
feasible (e g.. Kuhn and Quandt 119625, If a problem i< given 1 primal feasible
canonical form. then the Phase Il amplex aigonithm apphies while of a problem as
mmtially given 1in dual-feasible canomical forne the duar simplex algonthim apphes
Composite simplex algorithms are most applicable to the case where the problem s
both primal and dual infeasible i its goven canonical form

With these considerations as bachround. it was deaded tao doall testing aon 2 real
world problems These problems were collected from varions saurces by the Sustems Op
timizations lﬂhnraluf\ i the l)epdl”lnnl of ();nlnl]..z s Hesearot, ar Stantora Fopveraty,

tllul have Deen avalabie (O 1hany Meag s Ve Priobine s tatide ol a0 oo steay Lo thedaati,
and are beheved to he reprecentatve 0 near programs Tt are s B st pract)
tioners All the problemns have crash vases pereratet b0 AINVOS w0 pranad and
dual infeasible The statictios as S o0 ard et Lo "0 e e et e e shiow g,

JTable 32

Section 3.7 Testing Methodology 15

Problem Size " Density

Name "Rows | Cols [NonZeros| Percent
AFIRO ~ 9.82]
ADLITTLE 56 97 465 8.56]

SHARE2B 99 79 802 10.25
HARETE 118 T T
BEACONFD 174} 262 3476 7.62

ISRAEL 175] 142| 2358 9.49
BRANDY | 221 249 2130 397
E226 226/ 2821 3038 4.7
CAPRI 272| 353 1786 1.86
BANDM 306|472 .84
STAIR 357| 467 3857 2.31

ETAMACRO 401} 688 2489 0.90

Table 3.2 Problem Statistics

3.7 Testing Methodology

Except for the earlier reported tests on partial pricing, all computational tests in this
study were done on a Digital Equipment Corporation VaxStation II with 2 megabytes of
main memory. The operating system was MicroVMS version 4.3, and the VAX Fortran
Compiler, version 4.1, was used with the default options (which inciudes an optimizer). All
tests on a particular problem were run as a batch job to eliminate the effect of differences
in time of terminal input/output on the results.

The algorithms were implementea using MINOS version 5.0 as a framework, using
as modules for the various algorithms the same MINOS subroutines whenever possible,
in order to minimize any distortion of results due to special routines written specially for
each algorithm. All the options of MINOS were set at their defaults. For each specific
algorithm, four runs were made. These were classified as to whether the problem was
unscaled or scaled, and whether the initial crash basis was the UB crash basis or the SB
crash basis.

A special routine was written to act as a timer, which used a VMS routine that returns
the CPU time used in centiseconds. Hence, all timing results are accurate to at most a
hundredth of a second. Mainly timed were the execution of the entire code, including
input of the data and output of the results, and the execution of the MINOS subroutine
M5SOLV This subroutine takes as input a linear program in memory, and outputs in
memory the indices of the optimal basis. All algorithms were implemented as subroutines
of this main solving routine. The CPU time of this central routine is used to compare the
speeds of each algorithm. Since each algorithm was a variant of the simplex method, the
number of simplex iterations was also recorded.

Average timing statistics were also collected for the following operations: refactorizing
the basis. ratio tests. pricing out. updating the factorization of the basis, solving for =,
solving for the representation of the incoming column. and updating the current solution
r The CPU time required to collect these statistics was negligible compared to the total
execntion ime of the routine M5SOLV ., and did not influence the results.

e - -

DESEKSECEN A 3

‘9B

L A

F R

16 Section 3. Computational Testing Methodology

It should be noted that a re-run of the same algorithm on the same problem can
ﬁroduce slightly different CPU times, but never a difference in iteration counts. This can
appen because after every iteration, MINOS prints one line to an output file on a disk
to record information about that iteration. The time to perform this operation can vary
slightly, depending upon the position of the read/write heads of the disk drive. Because of
the nature of the VMS operating system, it is impossible to recreate exactly the conditions
of the disk drive prior to each run of the solver. I assumed that this source of error was
small and could be ignored in comparing the CPU times of various algorithms.

For each algoritgm, four tables that correspond to one of two crash bases and one of
two scaling options will be presented in the sections that follow. The vertical ordering of
the results will be by the increasing number of rows in each problem. Corresponding to
the four tables, the effects of scaling for the algorithm will be analyzed. The four tables for
each composite algorithm will be compared to the four tables in the next section. Section
8 contains a comparitive study of the entire set of algorithms.

3.8 Results for the Primal Simplex Algorithm

For the twelve problems, the standard two-phase procedure described in Section 2 was run.
The results for this algorithm are presented in Tables 3.4-3.7. Table 3.3 below summarizes
these results for the effects of scaling and the crash basis on the two-phase algorithm.

Starting Basis UB SB
Scaling Status{Unscaled| Scaled |[Unscaled| Scaled
"UB Unscaled AW-TL T 4W-4L | 4W-
Scaled TW-4L 6W-3L | 6W-4L
SB Unscaled JW-aL | 3W-6L 3W-3L
Scaled TW-AL | 4W-6L | 3W-3L

Table 3.3 Two-Phase Algorithm—Comparison of Scaling versus Nonscaling

For any pair of tables, the twelve problems were compared and the number of “wins” and
“losses” were counted. The entry W/L in Table 3.3 corresponds to the number of wins
and losses, respectively. A win W is scored for each problem when the combination shown
on the left margin of the table had less CPU time and less iterations than the one shown
on the top margin of the table. A loss L is similarly scored. If either the CPU time was
equal or the number of iterations was equal, or the number of iterations was higher, but
the CPU time was less, neither a win or a loss was credited. Hence, W + L # 12 in all of
the cases. There are three possible explanations why the latter inconsistency occurred:

1. There are slight inaccuracies in the timing mecﬁanism (e.g., AFIRO);

2. The number of iterations is close, but the simplex paths taken are slightly different,
with one path using somewhat sparser LU factorizations of the basis (e.g., BRANDY);
and,

3. The number of iterations is close, but more time is spent in Phase 1I, where the
computation of 7 is more expensive, since ¢y is more dense in Phase I than in Phase
I(eg., ETAMACRO%.

It seems that there is no clear cut advantage to choosing scaling or one of the two different
starting crash bases. There is a slight advantage to using the SCALE option of MINOS
(scaled with the SB basis) as opposed to not using that option (unscaled with the UB
basis).

-
»
-
(
~
-
¢
-
.
-~

|||||

Table 3.5 Two-Phase Algorithm—Scaled with UB Basis

I N ACAL

Section 3.8 Results for the Primal Simplex Algorithm 17 g
Problem Name] Phase | Phase 11 Total ‘CPU Time | 2
Iterations | Iterations | Iterations | (Seconds :

'AFIRO 2 ! 6 mL ,
ADLITTLE 28 96 124 12.04 !
SHARE2B 82 42 124 15.20 :
SHAREIB 143 144 287 4501 | i
BEACONFD 8 30 38 8.36 3
ISRAEL 109 243 352 73.88 /
BRANDY 76 I16 7 | 68.13 | :
E226 111 460 571 147.74 '
CAPRI 140 143 283 62.02 .
BANDM 186 247 433 | 134.10 | .
STAIR 198 319 517 273.25 3
ETAMACRO 251 422 673 200.59 f

Table 3.4 Two-Phase Algorithm—Unscaled with UB Basis

R

blem Name] Phase | Phase 1T “Total "CPU Time | o
Iterations | Iterations | Iterations | (Seconds) .

AFIRO 7 3 032 ,
ADLITTLE 22 64 86 8.40 .
SHARE2B 84 52 136 16.17 '
SHARETB 133 16 331 607 A
BEACONFD 7 32 39 8.45 ”
ISRAEL 93 211 304 62.38 "
‘BRANDY ~ 253 139 302 94.59 | »-
E226 69 417 486 118.55 -
CAPRI 153 63 216 46.62
‘BANDM 188 291 —379 112.67 | :
STAIR 180 126 306 167.99 y
ETAMACRO 282 477 759 230.12 ;

Section 3. Computational Testing Methodology

Problem N

~ Phase 1
Iterations

Phase 11
Iterations

Total
Iterations

ime

'AFIRO
ADLITTLE
SHARE2B

2
31

7|
79
26

6
110
88

e

10.16
10.42

SHARETB
BEACONFD
ISRAEL

62
133
7

65

169
31
225

304
38
290

47353
8.23
59.23

E226
CAPRI

178
101
130

114
302
161

403
291

70.63
99.22
64.43

'BANDM
STAIR
ETAMACRO

~188
214
484

253"
349
464

441
563
948

133.45
278.14
274.01

Table 3.6 Two-Phase Algorithm—Unscaled with SB Basis

‘Problem Name]

Phase |

Iterations

Phase 11
Iterations

“Total
Iterations

CPU Time

'AFIRO
ADLITTLE
SHARE2B

2
30
74

4
69
47

6
99
121

(Seconds)
~0.50 |

9.37
1431

SHAREIB
BEACONFD
ISRAEL

144
6
41

116
33
186

260
39
227

39.12
8.45
48.68

BRANDY
E226
CAPRI

216
101
178

161
368
57

377
469
235

93.71
117.97
48.46

BANDM
STAIR
ETAMACRO

280
193
219

254
196
669

534
389
888

164.76
211.16
275.66

Table 3.7 Two-Phase Algorithm—Scaled with SB Basis

(SOPPUR.] (AT AT I AN AL R TR AN AT AN T AT XL N AR NN U RN RN LR O R RO O TON PO TOF T YOO T Y

Section 4.1 The Weighted Objective Method: Algorithm 19

o e~

Section 4. The Weighted Objective Method

In this section, the weighted objective method is discussed. The algorithm is similar to |
the classical big-M method and absolute value penalty methods of nonlinear programming.
These similarities are noted and the implementation of the algorithm is discussed as well.

4.1 The Weighted Objective Method: Algorithm

The main idea behind the weighted objective method is to create a new linear program

combining the objectives used in Phase I and Phase II in the standard procedure. The 1
Phase I objective dTz is combined with the Phase II objective cTz to form a weighted
combination z = d7z + ¢z, which is then minimized. If the new objective has an optimal {
solution that is infeasible for the original problem, then o is decreased by a factor of 10

and the method is continued. If o is reduced by a factor of 10 five times (a MINOS

default) and a feasible solution has not been reached, then o is set to 0, and the usual two-

phase approach is resumed. If the weighted linear program remains infeasible after a 10°

reduction, it is most likely the original linear program is infeasible or o was initially chosen

much too large. The usual ‘most negative reduced cost rule’ is used to choose the incoming

variable. The algorithm that follows looks very similar to the two-phase procedure, with

the major differences being the way ¢ is defined and in the scheme for reducing o.

procedure weighted_objective;
finished — false;
count «— 5;
while not finished do
begin
if needs_factorization(B) then factorize(B);
if infeasible basis(B) then ¢« d+ oc else ¢« ¢

FindPI: Solve #TB = é, for =;

PriceOut: Find s such that z, has minimum reduced cost é,;

optimal — ¢, > 0;
if not optimal then
begin

Represent: Solve Bp = [A I]., for p;

RatioTest: Find r such that z,, blocks the change in z,;

unbounded —r =0

if not unbounded then
begin
qg+— B,

Update: Update value of z;

pivot(B,s,q,r);
end;
end; ¢
infeasible — infeasible basis(B) and optimal,
if infeasible and o >0 then

20 Section 4. The Weighted Objective Method

begin
infeasidle — false;
if count >1 then
begin
count — count — 1;
o+~ o/10;
end
else o — 0;
end;
ﬁniashed +— optimal or unbounded or infeasible;
end;

MINOS provides a WEIGHT ON LINEAR OBJECTIVE option that allows the user to
choose the initial value of o. It is not clear what heuristics a user should use when choos-
ing 0. In their research on the barrier method, Gill et al. (1986) found that a choice of
o = .1/||c|| was promising for that method. The same value was used for the computational
tests contained herein.

4.2 The Big-M Method

The big-M method is very similar to the weighted objective method. In its simplest form,
a linear program with equality constraints is given:

minimize Tz
subject to Az = b, (4.1)
z20.

By multiplying equation ¢ by —1 if b; < 0, it transforms this linear program so that b; > 0
for all . A set of artificial variables u is added and a new objective is formed:

minimize ¢’z + MeTu

subject to Az + Ju = b, (4.2)
z,u>0,
where e = (1,1,...,1). If M is a very large number, then minimization of this form will

be equivalent to the textbook form of Phase I of the simplex method. (A slightly different
form is used in MINOS). If M is given a specific value, then this method is equivalent to
the weighted objective method.

The origins of this method are not clear. Hadley (1962) refers to the method as
“Charnes’ —M method.” The earliest work by Charnes using the notation of M appears
in Charnes, Cooper, and Henderson (1953). There, Charnes credits Dantzig’s first paper
on the simplex method (1951) with the idea that became the big-M method. There,
Dantzig referred to assigning “small” weights to the infeasibility objective. (Since his
linear program was a maximization problem, the “small” must have been in the sense of
being initially very negative.) There also seems to be an independent development which
used the notation w for M as used above. This appears in the works of Orden (1951) and
Mayberry (1951), who credit Dantzig with the idea. Orden worked closely with Dantzig
in the Pentagon around 1950 and the idea may have been informally suggested to Orden
by Dantzig. In the implementation of the method, it is not clear whether M is to be used
symbolically, or whether M was actually a preassigned a fixed value. The big-M method
has been reported to have been quite successful when a model with minor changes is solved
repeatedly and the value of M (experimentally arrived at) is not too large.

T R Te LTY T T T RN e e T T AT T s e e e e e e ey A e N Ny - . . e
f (J"“ o -’ oL “. :" A (-.‘.- -~ "..'.- " e e "“- Lo 4.\‘. -\ "‘?" Ca o " Ta ="y ".\"‘. r' "{ ‘ﬂ'r‘_-. - ‘, \"'.-f o, "‘

' e "R AT e . o~
- . . Y LIPS T
v AR s RS A I I I R)
a2

)

Section 4.4 Implementation and Computational Results 21

4.3 Absolute Value Penalty Methods

Gill et al. (1981) describe the use of absolute value penalty functions when applied to
nonlinear programs with nonlinear constraints. When applied to the linear program (4.1),
this method becomes equivalent to the weighted objective method.

Given the nonlinear program

minimize F(z)
subject to éi(z) =0, i=1,...,¢, (4.3)

the absolute value penalty function is defined as

Pa(z,p) = F(z)+p)_ léi(=)l, (4.4)

=1

for some scalar p > 0. If one lets
éi(z) = b — alz = u;, (4.5)

where u represents the artificial variables of the big-M method, then

Pi(z,p) =Tz + pz u;. (4.6)

=1

This is the same function used by the big-M method with p = M. Hence, the absolute
value penalty function, when applied to linear programs, yields the weighted objective
method.

4.4 Implementation and Computational Results

The weighted objective method is quite simple to implement. Since the objective vector
c is stored as part of the matrix A in MINOS, a pass must be made through A in order
to compute ||c||. MINOS provides the mechanism for reducing o if the current basis is
optimal for the weighted objective but still infeasible. Hence, there is a small amount of
extra work necessary for this method that occurs at the beginning of execution and during
the case when o must be reduced. It should also be noted that partial pricing is available
with this algorithm, if the user so desires.

The computational results are presented in Tables 4.3-4.6. The column for “Infea-
sibility” iterations refers to iterations while the solution was infeasible. The column for
“Post-Infeasibility” iterations refers to iterations that occurred after a feasible solution was
found, which were iterations identical to Phase II of the two-phase algorithm. It is inter-
esting to note that for the problem BRANDY without scaling, the first feasible solution
found for both starting bases was the optimal solution. This phenomena did not occur for
this problem when the problem was scaled.

Table 4.5 summarizes the effects of scaling for the weighted objective algorithm. The
meaning of each entry is the same as in Section 3. The choice of starting basis or scaling
seems to have little effect on this algorithm.

_-" _f‘:

o '_’-.‘, R "_):.-"_- ‘.--'3\:" \..\'-'.._'.._\-.‘\‘l\."--.'-A DR
BAD N h !

TR P Ay -"-‘..'-' o

P

(AR AN

‘,|‘.\|.'\ Bt At st ata a2t 8 e 00 e e 8l "1 A e A e ' €Yt 12 4% 0 4SEA'E. \ ate 448" T I Y I T Y I Y I Y R 0°a,.8°0,6 §,8 6,°

LA,

j 22 Section 4. The Weighted Objective Method

")

) Table 4.6 compares the weighted objective algorithm to the two-phase algorithm. For

s each scaling/starting-basis pair, the two tables were compared separately for CPU time
and iterations. The W/L entry indicates the number of wins and losses for the weighted

‘ objective algorithm versus the two-phase algorithm. In comparing the results, there were

- many instances where the number of iterations was unchanged, indicating that the choice

- of initial weight may be too small. From this table, we can see that the weighted objective

3 algorithm tends to decrease the number of pivots necessary to reach the optimal solution,

but does not always reduce the CPU time. This is because in the case where the number
of iterations on a particular problem is equal, the CPU t.me for the weighted objective
algorithm will be higher due to the initial computation of ||¢||.

ttttttt

Section 4.4

Implementation and Computational Results

blem Name] Infeasibility [Post-Infeas.| Total CPU Time |
Iterations | Iterations | Iterations | (Seconds
AFIRO 4 6 0.53
ADLITTLE 31 110 141 13.52
SHARE2B 77 41 118 14.94
SHAREIB 143 144 287 47.80
BEACONFD 8 29 37 8.46
ISRAEL 148 230 378 83.47

BRANDY 311 0 311 19.44
E226 115 373 488 129.47
CAPRI 194 35 229 52.05

BANDM 184 177 361 11327 |
STAIR 198 319 517 263.17
ETAMACRO 217 389 606 181.98

Table 4.1 Weighted Objective Algorithm—Unscaled with UB Basis

Problem Name] Infeasibility | Post-Infeas.[Total CPU Time
| Iterations | Iterations Iterations | (Seconds)
AFIRO 2 4 6 0353 |
ADLITTLE 22 63 85 8.35
SHARE2B 94 36 130 15.85
'SHAREIB 128" 136 264 40.74
BEACONFD 7 32 39 8.83
ISRAEL 90 209 299 64.16
BRANDY 228 138 366 8830 |
E226 70 411 481 121.27
CAPRI 171 45 216 48.87
BANDM 186 —207 393 123.99 |
STAIR 180 126 306 174.74
ETAMACRO 194 584 778 256.10

Table 4.2 Weighted Objective Algorithm—Scaled with UB Basis

24

Section 4. The Weighted Objective Method

Problem Name] Infeasibility [Post-Infeas.| Total CPOTime |
Iterations | Iterations | Iterations | (Seconds) |
AFIRO 4 [:
ADLITTLE 26 73 99 9.43
SHARE2B 60 25 85 9.82 |
SHAREIB- 139 137 306 3261
BEACONFD 7 31 38 8.58
ISRAEL 92 215 307 65.25
BRANDY pky) 0 737 T
E226 101 390 491 127.13
CAPRI 195 51 246 5491
'BANDM 233 212 437 14183 |
STAIR 215 275 490 243.72
ETAMACRO 471 462 933 286.92

Table 4.3 Weighted Objective Algorithm—Unscaled with SB Basis

Problem Name] Infeasibility [Post-Infeas.] Total | CPU Time |
Iterations | Iterations | Iterations | (Seconds)
'AFIRO 2 4 6 0.32
ADLITTLE 26 67 93 8.99
SHARE2B 90 55 145 18.02
SHAREIB 123 k] 198 31.52
BEACONFD 6 33 39 8.95
ISRAEL 43 184 227 49.52
BRANDY 208 143 33T 8514 |
E226 106 348 454 112.87
CAPRI 204 53 257 57.71
'BANDM 280 2354 534 169.87
STAIR 193 196 389 204.45
ETAMACRO 219 513 732 235.86

Table 4.4 Weighted Objective Algorithm—Scaled with SB Basis

e Abe Aie A S Ab. 4 o

Section 4.4 Implementation and Computational Results 25

Starting Basis UB SB
Scaling Status|[Unscaled] Scaled [Unscaled] Scaled
UB Unscaled SW3L [6W-3L
“Scaled oW-3L SWI3L [3W-3L
SB Unscaled SW-3L | 3W-3L SW-or |
Scaled SW-8L | SW-3L | 6W-3L

Table 4.5 Weighted Objective Algorithm -

Comparison of Scaling versus Nonscaling

Starting Basis UB SB
jS d%nscaTe

| Scaling Status nscaled] Scale d[Scaled
WCIEEE z%ﬁtwc CPU 6W-6L TWOL | 3W-6L | 6W-6L |
versus 1wo-Phase | lterations | OW-3L | SW-3L | 6W4L | 3W-2L

lable §+ 6 Weighted Objective Algorithm Companison to Two -Phase Algorithm

...... D T T L Lo . : -)
LI PPN ACPO PN, ST I IR IR AN adoda e e doa oo o o PP PO PP WP I) Y

26 Section 5. The Markowitz Criterion

Section 5. The Markewitz Criterion

The Markowits criterion is an alternative rule for selecting the incoming variable in
Phase I of the simplex method. In this section, the algorithm and its implementation are
discussed and computational results are presented.

5.1 The Markowitz Criterion: Algorithm

The cniterion informally suggested to Dantzig by Harry Markowitz and discussed in
Dantzig’s book (1963) is a different rule for choosing the incoming variable z, in Phase
I. After a feasible point is found, the usual Phase Il procedure is resumed. The reduced
cost d, represents the decrease in the infeasibility form w = d”z per unit change in z,.

Similarly, the reduced cost ¢, represents the decrease in the objective z = cTr per unit
change in z,. The idea behind the Markowitz criterion is to choose z, in such a way that
there is a maximum decrease of the objective form z per unit decrease of the infeasibility

form w. Mathematically, s i1s chosen so that

¢, . €,
— = min —= 5.1.1
-d. J, <0 -d. ()

The algorithm is guaranteed to converge, since d, < 0, and w will decrease at every
iteration, assuming some lexicographic device for resolving degeneracy. The procedure for
this algorithm in terms of the simplex method is as follows:

procedure Markowntz_Criterion;
finsshed — false;
while not finushed do
begin
if needs_factorization(B) then factorze(B):

FindPI: Solve xTB = ¢, for .
if snfeasible bass(B) then begin
FindPI: Solve #7B = d, for ir;l

PriceOut: Find s such that r, has min ratio —ft— for d, < 0.

optimal ~— d, > 0:
end
else besjn

PriceOut: Find s such that r, has minimum reduced cost c,.

optimal — ¢, > 0.
end
if not optimal then

Represent Solve Bp = 'A I, for p.

\
RatioTest Find r such that r,, blocks the change in r, |

J

unbounded — r = 0

Section 5.1 The Markowitz Critenon: Algonthm 27

if not wndounded then
begin
g — B,.

Update: Update value of r:

pwot(B,s.q.r),
end;
end.
infeasible — infeassble basrs(B) and optimal;
finished — optimal or unbounded or infeassble.
end.

There are some interesting properties of this algorithm. If ¢, > 0, then a change in 1ny
nonbasic variable that decreases w will increase z. At such a point, the current solution to
the hnear program is most likely superoptimal. If é, < 0, then changing r, will decrease
simultaneously both the infeasibility form w and the objective form :. This would appear
to be the most desired choice of s. However, it appears that any such s are found for only
the first few iterations of the method. Thereafter, ¢, > 0. This observation leads one to
believe that the Markowitz criterion has the feature that the primal and dual feasibility
conditions are at war with each other. In the next section, the computational results will
verify this statement.

The Markowitz criterion relates in an interesting way to the weighted objective
method. The weighted objective 1s

:=d’r +oc'r. {5.1.2)

[his objective can be multiplied by /0 so that the weight 1s now on the infeasibility form.
I he reduced costs for this new objective are equal to

(1—>::<-l—)d+r. (5.1.3)
a a

For any nonbasic r, with d;, < 0. if

= L (5.1.4)

1
-}z =0 5.1.5
((7) ,) (5.1.5)

By companng equations 151 1) and (5.1 .4). one can see that the Markowitz critenon s

then

dvnanncally balancmg the weight on the jfeasitnhty form d7z so that =, = 0 It chooses
the nnmimal werght <o that this condition 1< 1rue

h I IRARA

28 Section 5 The Markowitz Critenon

5.2 Iimplementation and Computational Results

The Markowitz cniterion requires some extra work per iteration when the basis 1s primal

infeasible In Phase | of the two-phase method. only the prices and reduced costs im the

nfeasibility form d"r are computed For the Markowitz cnterion. the prices and reduced

costs for the objective form ¢’'r may need to be computed as well There are two possible

methods of implementation (where t4 is the optimality tolerance as defined 10 Section 3
I In the main loop that computes the reduced costs d, for each nonhasic r,. ¢,
computed a: well The values of the elements of the sparse matrix 4 are each retrieved
once from memory

2 For each nonbasic 1, ¢, 1s computed only when d, « 1y = Hence o) 18 not alwass
computed However. when o, 1 computed. a sinmalar pricing loop s used as wher,

)
computing d, Therefore. each element of the sparse matnix 4 s retnesed twice fron,
Memory

In either case. an extra call to the procedure FindP1 mist be made i order to compnte =

It would seem that the second of the two options s more ethcent Faxpenimentai evidenae

mmdicates that the second option was better i over Y0 percent of the computational tests

Hence, the results reported below use that option
In order to use equivalent tolerance criteria. oy thase ;) for whaoh d, - tq T are

used when evajuating the expression 5 1 1 Ifall d, -ty = then the current solution
i~ considered optimai for the Phase | huear progran and the asual Phase [procedure i~
begun

[he computational results for the Marhowity cniterion are presented (n lables 51 5 4
[he column for “Infeasibility iterations” refers to the number of iterations performed when
thie hasis was primal infeasible [he coluna for "Post Tuteasibiaty iterations” refers 1o the
number of iterations performed after a feasinie solation was found o rerssting to note
that for many of che problemis the tirst feasinie sontion found was the optinal solution
independent of the starting crash basisc or of scahing This indicates that the Marhowity
criterion usually finds a basic that i« superoptimai and maitains saperoptimality until the
optimal basis 1s found Most of the probiemns require few Phase [iteratione Hencel the
imtial feasible point found by the Marhowity cnitenion s cose to the aptanal solution
terms of Hamming distance

Table 5.5 summarnizes the etffecrs of scahing tor the Marhowsts cniterion [oe meanmng
of each entry 1s the same as in Section 3 The chionce Of Starting basis or sodanng seetns to
have no overall effect on this algonitho, It s interesting 1o nate that e SB bavs was
better than the UB basis when scaling was used beir that the resuts swere reversed when
scaling was not used

Table 5 6 compares the Markowitz cniterion to the tawe phiase ag ot bor each
scaiimg/starting basic pair. the two tabies were compated separatess o CED time and
erations The W Loentry indicates the oanber of wits aned osses G 1ne Marnawaty
critenion versus the two phase aigonthon Frann fhas tatne we i see that there e e
be no advantage toorng the Markowty criterion esneps D g e antoen s

latie 0

2 Marnowity Crpternion

Scaled with UB Basae

Section 5.2 Implementation and Computational Results 29
Problem Name] Infeasibility | Post-Infcas.| Total CPUTime |
Iterations Iterations Iterations | (Seconds)
AFIRO — 7 10 0.78
ADLITTLE 117 0 117 12.77
SHARE2B 150 2 152 22.73
SHARETB 196 13 200 .
BEACONFD 56 11 67 15.85
ISRAEL 315 0 315 80.35
BRANDY 339 0 359 103.32
E226 632 0 632 208.88
CAPRI 203 33 236 60.19
BANDM 399 0 399 | 225.33
STAIR 1021 0 1021 593.92
ETAMACRO 673 191 864 321.73
lable 51 Markowitz Cntenion Unscaled with UB Basis
Problem Namej Infeasibility [Post-Infeas. Total CPU Time
Iterations Iterations Iterations (Seconds)
[AFTRO 7 3 10 0.79 |
ADLITTLE 100 0 100 11.34
SHARE2B 83 10 93 12.44
SHAREIB 133 3 155 2723
BEACONFD 59 21 80 19.50
ISRAEL. 260 25 285 69.34
BRANDY 463 0 463 133.88 |
E226 649 27 676 214.83
CAPRI 190 19 229 58.19
BANDM 700 0 700 265.61
STAIR 1766 0 1766 984 .42
ETAMACRCG, S68 157 725 267.54

Section 5. The Markowitz Criterion

Problem Namd

Infeasibility
Iterations

Post-Infeas.
Iterations

Total
Iterations

"CPU Time |
(Seconds)
—0.78 |

'AFIRO
ADLITTLE
SHARE2B

-
131
138

10
131
146

14.14
20.72

SHARETB

BEACONFD
ISRAEL

268
75
271

280
79
271

30.14
21.30
70.31

BRANDY
E226
CAPRI

i)
566
280

79
580
294

137.23
188.23

'BANDM
STAIR
ETAMACRO

684
1238
883

684
1252
950

74.87

637.92
358.07

Table 5.3 Markowitz Criterion— Unscaled with SB Basis

Problem Name

Tnfeasibility

Iterations

Post-Infeas.
Iterations

Total
Iterations

CPU Time
(Seconds)

AFIRO

ADLITTLE
SHARE2B

T
90
74

3
1
10

10
91
84

0.77
10.09
11.11

]
BEACONFD
ISRAEL

247
61
262

a3
12
0

~ 201
73
262

50.16
19.46
68.14

‘BRANDY
E226
|CAPRI

448
640
308

B
0
13

448
640
321

128.26
204.22
83.62

STAIR

ETAMACRO

373
1849

0
0

524

195

~ 575
1849
719

211.62 |
1088.95
259.51

Table 5.4 Markowitz Criterion- -Scaled with SB Basis

1 at Maf gl ap 4y 0 - IR UM U U URUY A UL L U U U LN UR U LU U L L LN VW 14 Cal an, g¥. af et ah. ot Al gi.c-ale gt gty st g0, ats g, gte §ia 0", 7'

Section 5.2 Implementation and Computational Results 31 v

Starfing_Basis ~ UB SB £
caling Status Unscaled] Scaled [Unscaled| Scaled
UB Unscaled SW-6L | 8W-3L | SW-3L'}
Scaled “6W-3L OW-3L | 3SW-8L
SB Unscaled IW-8L L':1W—6L 4W-TL]
Scaled 3W-3L | 8W-3L| TW-L

Table 5.5 Markowitz Criterion—Comparisons of Scaling versus Nonscaling

Starting Basis IU UB SB <

Scaling Status nscaled| Scaled I!_J‘nscalalfScaled | .

- Markowitz Criterion CPU 2W-10L | 2W-10L -12L -1 :
versus Two-Phase | Iterations | 4W-8L | 4W-8L | 2W-10L | 3W-OL |]

Table 5.6 Markowitz Criterion—Comparison to Two-Phase Algorithm

S P S
IR A

a E e 8 L & &

AR RERE R N AN Y KAV AN R AR N AL VN UN N UKD 'Y\ * \J t t gt S U VEUYUN IV N1 LA U L P

32 Section 6. The Self-Dual Parametric Algorithm

Section 6. The Self-Dual Parametric Algorithm

In this section, Dantzig’s self-dual parametric algorithm is discussed. This algorithm
has been shown (Lustig, 1987) to be equivalent to Lemke’s algorithm for solving linear
complementarity problems when applied to linear programs as a special case. The imple-
mentation of the self-dual algorithm is described and computational results are presented.

6.1 Dantzig's Self-Dual Parametric Algorithm

Dantzig (1963) describes the self-dual parametric algorithm as a method which does not
require an initial primal or dual feasible solution, but which uses the concepts of the
primal and dual simplex algorithms extensively. Both the weighted objective method and
the Markowitz criterion are alternative rules for choosing the incoming variable s in Phase
I of the simplex method. After s is chosen, the outgoing variable r is chosen by the normal
ratio test. In contrast, the self-dual algorithm changes the order of choosing the incoming
variable s and the outgoing variable r on each iteration depending on the current basic
solution to the problem. Ravindran (1970) gave an equivalent statement of the algorithm
by modifying Lemke’s method to modify only the primal simplex tableau.

It is easier to understand the method using some of his notation. The discussion of
the algorithm is simpler when applied to the linear program

minimize clz
subject to Az 2 b, (6.1.1)
z2>0.

A parameter 6 is used in this method and the linear program (6.1.1) is transformed to

minimize (c + 6d)7z
subject to — Az 4+ Ju=-b+6f, (6.1.2)
z,u>0

where u € ™ is a vector of slack variables which form an initial basis,

f,-={(l)’ :g:zg for i=1,...,m, (6.1.3)
and y
d,-:{é' 11.2‘7;8’, for j=1,...,n (6.1.4)
’] =
If # = 400, then the basis u;, ug, ..., up, is both primal and dual feasible for the parametric

linear program (6.1.2). There exists a value

—b, . CJ'
= — mi i _— - 1.5
6o mln{'=ril?.l.1.1'm { 3 JJi> 0} min {dj ,d; > 0}} (6.1.5)

bl Ba® Bat 0t et 0% 4a' da" 70t Mol IO L PURTLL T S AL TR Tepre e P L R R N S R R R e e o 'Y P “ate €' 20:°a%a’ Ata'al

Section 6.1 Dantzig’s Self-Dual Parametric Algorithm 33

and an € > 0 such that for 8 = 6y — ¢, the current basic solution to the parametric linear
program (6.1.2) is infeasible for only one primal variable or one dual variable (assuming
no ties exist when equation (6.1.5) is evaluated—this occurs when degeneracy exists in
the parametric linear program). If § = 6, then the parametric linear program has either
multiple primal or multiple dual solutions. If a reduced cost c; + 6od; for a nonbasic z;
was zero, one could set s = j and attempt to make z, basic, usmg the prlmal simplex ratio
test

=b; + fi6
r = argmin {—j—f;—ﬂ, —ai, > 0} (6.1.6)
i=1,...,m —Qys
to determine r. If a primal basic variable u; = —b; + 6y f; was zero, then one could set

r =t and use the dual simplex ratio test

. 0
§ = argmin {cij-—dj—g, —a,j < 0} (6.1.7)
1=1,..., n aY‘j

to determine s. After exchanging z, and u, in the basis, the new basic solution is optimal
for 8§ = 6,. Both f and d must be updated to values f and d in the same way as —b and ¢
are updated to values b and ¢. Dantzig (1963) and Ravindran (1970) give different proofs
showing that 6 can now be reduced to a value below §; while maintaining primal and dual
feasibility. The system is now in the same form as the parametric linear program (6.1.2)
by a relabeling of the variables. The process can be continued until § = 0. At this point, a
primal and dual feasible solution to the original linear program (6.1.1) has been obtained.
If the ratio test performed in (6.1.6) has no —a,, > 0 or the ratio test performed in (6.1.7)
has no —a,; < 0, then the original linear program (6.1.1) is primal or dual infeasible (or
both?.

n the framework of the revised simplex method, the algorithm is as follows:

procedure Self _Dual(f,d);
finished — false;
0 — +oc;
while not finished do begin
optimal — false,;
if needs_factorization(B) then factorize(B);

RatioTest: Find s or r such that z,_or ¢, blocks the change in 8
if blocks(¢,) then begin
Represent: Solve Bp = (A4 I]., for p;

RatioTest: Find r such that r,, + 6f, blocks the change in r,:

unbounded _infeasible — r = 0;
if not unbounded_infeasible then begin

FindPI: Solve 1 Ti7 = ¢, for ~:

PriceOut: Compute 3 = A,. — y[4 I}

end
end
else if blocks(r,,) then begin

TURITARI R KARA R

hY

.' ; 5. ". -'. ‘r

c e

.........
.......
...........

LU LN U I I LI L LI U UL U P LY LAY LT U LA U LY L T Y U U L T T T DY O I TN W N W IN Y L W I T o G g P aieda?

34 Section 6. The Self-Dual Parametric Algorithm

|FindPI: Solve vTB = e, for v;
lPriceOut: Compute ¥ = A,. — vy[A I}; l
lRatioTest: Find s such that &, + 8d, blocks the change in =,;

ﬁnboundcd.infeasible —3s=0;
if not unbounded_infeasible then

Represent: Soive Bp = [A4 I]., for p;

end
finished — optimal or unbounded_infeasible;
if not finisked then begin

q « By;

Update: Update values of z,¢,d, f;

pivot(B, s, q,r);
end;
end;

There are some things to note about this form of the algorithm. The variable
unbounded _infeastble indicates that the original linear program has either an unbounded
objective function or no feasible solution. If this variable is set to true, then one can use
the normal two-phase simplex method to determine the infeasibility or unboundedness of
the problem. The vector ¥ is needed to update ¢ and d. In the normal revised simplex
method, ¢ is recomputed each iteration by pricing out. In the revised simple:. form of the
self-dual method, it is more efficient to compute ¥ by a pricing operation and then update
¢ and d using the formulas

E—¢é—6,5 and dd- 67, (6.1.8)
where _
_ d,

61 = -fi and 62 = - (619)
Vs Ys

This method eliminates one full call to the routine PriceOQut. _ ~

It should be noted that the routine name Self_Dual(f,d) has f and d as parameters.
This is because the initial choice of f and d must satisfy —b+ 6f > 0 and ¢+ 6d > 0 for
some 8 > 0. Hence the initial values of f and d defined in equations (6.1.3) and (6.1.4) are
specific instances of the parameters f and d, respectively. In Section 7, a variant of the
self-dual method that uses a different choice for the initial values of f and d is discussed.

Section 6.2 Implementation and Computational Results 35

6.2 Implementation and Computational Resuits

As compared to the two-phase simplex method, the self-dual algorithm must perform
some extra computational work per iteration. This extra work can be separated into two
categories—extra ratio tests and extra work in the procedure Update. In the two-phase
method, there is one ratio test for the m primal basic variables on every iteration. In the
self-dual algorithm, a ratio test is used to compute the new value of 6, by testing the m
primal basic variables and the n reduced costs for the nonbasic variables. If a dual variable
blocks the decrease of 6, the primal simplex algorithm is used and another ratio test for
the m primal variables is used. If a primal variable blocks the decrease of 8, then the dual
simplex algorithm is used and another ratio test for the n reduced costs is used. Therefore,
on each iteration, either 2m + n or m + 2n variables are tested in various ratio tests.

On each iteration in the two- phase simplex method, only the values of the m primal
basic variables must be updated. In the self-dual method the values of ¢, d and f must
be updated as well. Hence 2n + m extra variables must have their values updated besides
the m components of z.

For theoretical convergence of the self-dual method, 8 should decrease on each itera-
tion. However, due to degeneracies in the parametric linear program (6.1.2), § may remain
unchanged. Because of round-off errors, § may actually increase by an extremely small

amount. Hence, on each iteration, a tentative value of § = 8 is computed via the ratio
test. Then 6 is computed by taking the minimum of the previous value of and 6, i.e.,

~

§ — min(4, 6). (6.2.1)

Other round-off errors may cause the values z + 8f and ¢+ 6d to violate their feasibility
constraints by more than the primal and dual feasibility tolerances, respectively. When
MINOS checks to see if the current solution is too infeasible (in accordance with the CHECK
FREQUENCY option), the current parametric solution is checked as well. If a component
of the parametric solution violates its respective feasibility tolerance, then the respective
component of f or d is reset so that the current parametric solution is feasible. This allows
the algorithm to continue from the current solution without increasing the value of 6.

In the above discussion of the self-dual method, it was assumed that the linear program
had every variable bounded below by zero and that all of the linear constraints were of the
same type. The method was started from the basic variable set consisting of the m slack
variables. In the context of MINOS, the self-dual method is started from a crash basis B,
and each variable may have a finite lower or upper bound, or both. This affects the sign
of the nonzeros of f. Given this initial basis, the nonbasic variables are represented by set
A" such that N = A,.. Each of the nonbasic variables z,, is set equal to one of its bounds.
The equations for th(linear program can be rewritten as

Bry+ Nry =0, (6.2.2a)
[<r (6.2.2b)

IN

Since B is nonsingular. re can be computed by solving equation (6.2.2a). Now f, is chosen
according to whether ry violates its upper or lower bound. i.e.

fi=9 -1 ife, >u,.) =B (6.2.3)

0 otherwise.

{ L ifr, <1,) =By

&‘\.stLLA_L o

36 Section 6. The Self-Dual Parametric Algorithm

Then Iy < 245 + 8f < u, for all sufficiently large 8 if each of the variables in the initial
crash basis has exactly one finite bound.

If a variable has finite lower and upper bounds, then the parametric value z, + 6f
will satisfy one bound for large values of 6, but not the other. IFt’ turns out that the most
difficult computational issue in the self-dual method is the manipulation of primal basic
variables that have finite lower and upper bounds. Suppose z; is such a variable in the
initial crash basis and that B, = 1. If z; < l; for the initial basic solution, then the
parameterized value z; + f; > u; for large 6. After a pivot in the self-dual method, the

value of z; may exceed l; in such a way that z; + 8fi > I; for all § > 0. Furthermore,

z1 + 0f; > u; for the current value of 8. In order for the self-dual method to converge, it
is necessary to treat such conditions specially.

In the theoretical version of the self-dual method, each component of z has a lower
bound of 0 and no upper bound. If a variable z; has an upper bound u,, then the constraint

1+ 8=y (624)

is added to the problem, where s is the slack variable for the upper bound constraint. In
the context of MINOS, it is necessary to compute the value of s implicitly. If such a row
(6.2.4) were added to the MINOS constraint set, then the variable s would be in the initial
basis. Furthermore, the initial basic solution would satisfy

(1 0 e 0 (1)) (?)=(_Ixf”)- (6.2.5)

Similarly, the initial value of f satisfies

(o o O(D)-() 020

for some _f (where f; is the initial value of f corresponding to z,). If f, represents the
value of f corresponding to s on later iterations and z; remains basic, then

(1 oo ‘1’)({)=(ffl) (6.2.7)

Hence, the value of f, can be computed as

fo=H-h. (6.2.8)

Therefore, the parametric value of s is

3(0) = uy — z1 + 0(f1 - f1)- (6.2.9)

In a primal simplex ratio test, either z, + f; 8 is tested or s(8) is, depending upon whether z,
is increasing or decreasing as a function of the incoming basic variable. This computation is
simple, as long as the initial values of f are saved throughout the execution of the method.

5y,

LI s

LR e o o

Section 6.2 Implementation and Computational Results 37

This argument also applies to the first ratio test done on each iteration to find the
variable that blocks the decrease of 8. If s(6) blocks the decrease of 6, then z; exits the
basis and becomes nonbasic at its upper bound.

It should be noted that this problem does not occur with the parametric reduced
costs, since the dual variables of the linear program in MINOS standard form have at least
one infinite bound (ignoring the rare case of nonbasic free variables).

The computational results for the self-dual method are presented in Tables 6.2.1-6.2.4.
The columns for primal and dual iterations correspond to the number of primal simplex
and dual simplex iterations, respectively, done by the self-dual algorithm.

Table 6.2.5 compares the effects of scaling and the different crash bases on the self-dual
algorithm. The meaning of each entry is the same as in Section 3. Table 6.2.6 compares
the self-dual algorithm to the two-phase algorithm for iterations and CPU time. The entry
W — L indicates the number of times that the self-dual algorithm had less iterations (CPU
time) than the two-phase algorithm. The self-dual algorithm seems to reduce the number
of iterations on some problems, but the extra work per iteration increases the CPU time
enough so that the self-dual algorithm is faster than the two-phase algorithm for only a
few problems.

38

......

Section 6. The Self-Dual Parametric Algorithm

Problem Name] Primal Dual Total CPU Time |
Iterations | Iterations | Iterations | (Seconds
AFIRO 4 2 6 0.60
ADLITTLE 21 73 94 11.59
SHARE2B 44 63 107 15.96
ISHAREIB 241 249 450 101.22 |
BEACONFD 27 11 38 9.56
ISRAEL 240 82 322 82.22
BRANDY 120 312 437 129.76 |
E226 277 201 478 163.66
CAPRI 28 144 172 48.37
‘BANDM 773 180 BT I8
STAIR 307 351 658 381.97
ETAMACRO 472 373 845 362.25

Table 6.2.1 Self-Dual Algorithm—Unscaled with UB Basis

Problem Name] Primal Dual Total | CPU Time
Iterations Iterations Iterations | (Seconds)
AFIRO !) 6 0.62 |
ADLITTLE 33 39 72 8.57
SHARE2B 67 79 146 22.08
SHAREIB 128 183 313 61.90
BEACONFD 31 17 48 12.05
ISRAEL 177 60 237 61.20
RANDY 218 325 543 161.91
E226 295 205 500 166.47
CAPRI 45 159 204 57.81
BANDM 182 161 343 131.11
STAIR 186 335 521 316.63
ETAMACRO 635 227 862 367.55

Table 6.2.2 Self-Dual Algorithm—Scaled with UB Basis

.(.n_J.A_A.A_.a.a.a‘ 5

Section 6.2 Implementation and Computational Results
Problem Name] Primal " Dual ~Total CPU Time |
Iterations Iterations Iterations | (Seconds)
'AFIRO 3 2 6 0.65 |
ADLITTLE 29 94 123 14.79
SHARE2B 53 59 112 17.02
SHAREIB 127 128" 253 —30.83 |
BEACONFD 39 11 50 13.47
ISRAEL 210 21 231 58.00
BRANDY 175 ~ 226 401 122.26
E226 261 149 410 136.39
CAPRI 30 138 168 48.59
BANDM 288 265 333 | 434
STAIR 311 362 673 375.62
ETAMACRO 419 425 844 375.73
Table 6.2.3 Self-Dual Algorithm—Unscaled with SB Basis
Problem Name] Primal Dual ~ Total CPU Time
Iterations Iterations Iterations | (Seconds)
I'AFIRO 4 ~ 2 6 0.62 |
ADLITTLE 46 70 116 14.39
SHARE2B 91 81 172 25.37
SHAREIB 103 155 260 5
BEACONFD 36 12 48 11.92
ISRAEL 176 33 209 54.16
BRANDY 135 — 2090 344 106.08
E226 268 177 445 145.49
CAPRI 31 190 221 62.50
BANDM 270 ~ 268 538 212.70
STAIR 184 287 471 288.15
ETAMACRO 668 256 924 400.67

Table 6.2.4 Self-Dual Algorithm-—Scaled with SB Basis

ol P

40 Section 6. The Self-Dual Parametric Algorithm
Starting Basis UB SB
Scaling Status|Unscaled| Scaled [Unscaled| Scaled
UB nscaled OW3L | 4W3L [6W-3L
Scaled SW-6L aW-6L -5L |
SB ~Unscaled qaW4aL [oW-4L 3W-OL |
Scaled SW-6L [3W-3L | 6W-3L
Table 6.2.5 Self-Dual Algorithm—Comparison of Scaling versus Nonscaling
Starting Basis l(r UB SB
Sca1inL§tatus nscaled| Scaled nscaled] Scaled
Self-Dual CPU IW-10L | IW-T1L | 2W-10L -1
versus 1wo-Phase | lterations | 3W-3L | 4W-7L | 4W-7L [4W-6L

Table 6.2.6 Self-Dual Algorithm—Comparison to Two-Phase Algorithm

(W WRWEWL ‘B a8 2 8 aVE ate JUA aAR B8 a4 Ba’ Ba'ane gn: g1t gae ae FORTR T r 3 a0

Section 7.1 Normalized Covering Vectors 41

Section 7. Variants of the Self-Dual Parametric Algorithm

In this section, two variants of the self-dual parametric algorithm are discussed.
Both variants are motivated by considering the equivalence of the self-dual algorithm and
Lemke's method, shown by Lustig (1987). The %rst method is equivalent to choosing a
different covering vector for Lemke's algorithm. The second method tries to account for
the prevalence of fixed variables in the 1nitial crash basis.

7.1 Normalized Covering Vectors

When Lemke's algorithm is applied to the linear program

minimize ¢’z
subject to Ar 2 b, (7.1.1)
r >0,

an extra variable 8 1s adjoined to form the set of equations

~b £\ . 0 A\(y_[u
()= (D) (e 5) (1) - (2): (120
uly + 07 =0, (7.1.2b)
u,v,r,y > 0. (7.1.2¢)

For the self-dual algorithm to converge, the initial values of f and d must be chosen so
that the parametric primal basic variables and parametric reduced costs are nonnegative.
Typically, f and d are chosen so that

1, if b, > 0; -
f':{()’ if b, <0’ for 1=1,...,m, (7.1.3)
and '
dfz{(l): I?Ejig for j=1,....n (7.1.4)

In a study of the general linear complementarity problem, Eaves (1971) suggested varying
the choice of the initial values of f and d when using Lemke’s algorithm. The same sugges-
tion, of course, is applicable to the self-dual algorithm. Krueger (1986) also investigated
the effects of varying the initial values of f and d. For the self-dual algorithm, f and d
can be chosen so that the various ratio tests remain unaffected if the rows or columns of
the original linear program are rescaled. If the original problem is not scaled first. this will
only be in the sense that the initial value of 8 is unit-free, i.e., a change in units of any
primal or dual variable will not change the initial value of 6 with respect to this covering
vector. If the original problem has been scaled first and then f and d chosen so that 6 is
to be mitially scale-free, 1t will be so for all subsequent changes in 6.

Because an initial crash basis can contain both primal decision variables z,, ; =
l.....n.and slack variables u,, 1 = 1..... m.it isimportant to treat each of them separately

- . -
R L. AN

42 Section 7. Variants of the Self-Dual Parametric Algorithm

when develo Jnng a unit-free covering vector. Furthermore, the value d; for the reduced
cost ¢; will depend upon whether its complementary variable was a decmon variable or a
slack va.np,ble

Let A=[-AI],¢éT= (cT 0) € R™*", and relabel the m slack variables u, to be 4,
so that the linear program is now

minimize ¢’z
subject to Az = -b, (7.1.5)
z20.

Let the initial crash basis be represented by an index set B. Suppose h decision variables
zj, 1 <k<h,1<jx<n,andgslack variables z;,, h+1 <k<m,n+1<jy <n+m,
(m = g + h) are the initial basic variables and By = ji so that the first h basic variables

are decision variables. Let A index the n nonbasic variables. B = A, is nonsingular, and
therefore the linear program (7.1.5) can be rewritten

minimize (T~ cT,B~1A)z
subject to Izy + B 'Ayzy = ~B~ b, (7.1.6)
z20.

Writing £ = z,, &7 = (cTy — ¢TyB~'A,), A = =B~ 'A,, and b = B~!b, this linear
program can be rewritten as

minimize &7

subject to Az > b, (7.1.7)
z20.
Lemke’s method is initialized for (7.1.7) by writing
-5 \a AYNNA
(e DO wm
aly+ 678 = 0, (7.1.8b)
i,%,%,§ 20, (7.1.8¢)

where § = (y v)s, &t = 2, and ¥ = (y v)y. The initial ratio test in Lemke’s method for

(7.1.8) 1s)
9=—min{ m.m {f, f,>0}, mm {%,d1~>0}}. (7.1.9)

If a row or column of the original linear program (7.1.1) is multiplied by a scalar o, then
the ratio test (7.1.9) will be unit-free if f and d are chosen so that the blocking variable
in (7.1.9) is independent of the scaling. Hence, f and d will depend on the original values
of A, b, and c.

L e e =~

RARTIN

Section 7.1 Normalized Covering Vectors 43

First, consider when a column of the original problem (7.1.1) is scaled by a value 0.
Let z, be a variable in the initial crash basis. Then the initial value of z; = —b;. Suppose
that —b; < 0 so that z; is initially infeasible. If the column

5
(A-;) (1.1.10)
is multiplied by a value o, so that

(j:fl)=a(;fl), (7.1.11)

then the value of z, in the scaled problem is z} = -b, /o. We desire that the ratio
-b
— 7.1.12
7 (T.1.12)
be unaffected by this scaling. If
A=l ADIT (7.1.13)
then L s .
) L_} _
2 z(=b1) by (7.1.14)

A7 (e ADIFY T (e A -V

Hence, the ratio (7.1.12) is not affected by any scaling of the column for z,.

Suppose z; is initially nonbasic at its lower bound, and the initial value of the dual
variable ; = ¢, < 0. If a scaling as in (7.1.11) is done, then the initial value of ¥, is
v} = 0¢é,. In the initial ratio test for Lemke’s method, the ratio

¢y
— 7.1.1
7, (7.1.15)
1s computed. If
di=|(¢; AT, (7.1.16)
then the ratio (7.1.15) is
1 o0&y ¢
. = : (7.1.17)
di oll(ea AN (e AL

Hence, the ratio (7.1.15) is unaffected by any scaling of the column for r;.

When a row of the original problem is scaled, the values of the slack variables and
their reduced costs are affected. Suppose the first row (A;. b,) is scaled by a value o so
that

(A}, by)=0(A b). (7.1.18)

44 Section 7. Variants of the Self-Dual Parametric Algorithm

Suppose u; = b, — A,.z is in the initial crash basis and that u; = 34, < 0. If the above
scaling is done, then u] = ou;. We desire that the ratio test

A+l (7.1.19)
fan

is independent of any scaling on the first row. If

e =AY), (7.1.20)

then the ratio (7.1.19) is

u} ou; uy

farr ol (A b)Y (An b))

(7.1.21)

Hence, this choice of fy4; causes the ratio (7.1.19) to be unit-free.

Now suppose that u, is initially nonbasic at a value of u; = 0 and that its correspond-
ing dual variable g, is negative. §, = ép4; = —cg B~ le;, where e; is the first column of
the identity matrix. When the first row of A is scaled as in equation (7.1.18), the first
column of B~! is divided by 0. Hence, a scaling causes §} = §;/0. We desire that the
ratio

Chl
7.1.
d, (7.1.22)
be independent of scaling. If we set
dy = || (A} b)Y (7.1.23)
then the ratio (7.1.22) is
Vi ghw & (7.1.24)

d i‘ll(Ar by) |~ (A by)|~

which is seen to be independent of any scaling of the first row.

In summary, the value of f, will depend on whether the i*! basic variable is a decision
variable r,, 1 < ; < n, or a slack variable r,, n + 1 < ; < m + n. This distinction 1s
determined by the value of B, = ;. Hence, if z,, <0,

f, = Il (c, A-T;)||_l if 7 w1<
' N(Ax b)|] k=B, -n,1

IAIA

n
k<m

I

(f, = 0if z,, is feasible). The value of d, is determined for ¢, < 0 by

d,={':(9 AT) if1<;<n (7.1.26)

1A b)7 ifk=7-n1<k<m

-\

b o gt gt et At At tat ‘ghatat ‘gl at.® s Al @ty ale alea?st ~ vy ‘g 1 WYV RVNY g gte R%a ¥

Section 7.1 Normalized Covering Vectors 45

(d, = 0if & 2 0). These values can be computed prior to the first iteration of the self-dual
algorithm.

The computational results for the self-dual method with a normalized covering vector
are presented in Tables 7.1.1-7.1.4. The columns for primal and dual iterations correspond
to the number of primal simplex and dual simplex iterations, respectively, done by the self-
dual algorithm using that covering vector.

Table 7.1.5 summarizes the effects of scaling for the self-dual algorithm with a nor-
malized covering vector. It seems that the choice of scaling or the starting basis has little
effect on this variant.

Table 7.1.6 compares the self-dual algorithm with a normalized covering vector (NCV)
to the two-phase algorithm. It seems that this variant offers an improvement over the two-
phase procedure for only a few of the problems. The CPU time improvements occurred
only when the problem was unscaled and started from the UB basis.

Table 7.1.7 compares the effects of using the normalized covering vector versus using
the default vector in the self-dual algorithm. The results are mixed, and there does not
seem to be a clear advantage to using either covering vector. It is interesting to note
the results for when the problems were scaled and started from the SB basis. Here, the
iteration counts were higher when using the normalized covering vector, but the CPU time
was less in three of the cases. This is %ecause for those three problems, less dual simplex
iterations were done when the normalized covering vector was used, while the total number
of iterations increased. This indicates the sensitivity of the self-dual algorithms (and its
variants) to fluctuations in the number of primal and dual simplex iterations and their
effects on the total CPU time.

-

-
.
-

46

Section 7. Variants of the Self-Dual Parametric Algorithm

TN I LN

Problem Name] Primal “Dual Total CPU Time |
Iterations | Iterations | Iterations | (Seconds)

AFIRO) 6 0.62 |
ADLITTLE 46 70 116 14.39
SHARE2B 91 81 172 25.37

SHAREIB" 1 135 260 352.57 |
BEACONFD 36 12 48 11.92
ISRAEL 176 33 209 54.16
135 ~ 344 106.08
E226 268 177 445 145.49
CAPRI 31 190 221 62.50
'BANDM ~ 270 ~ 268 538 212.70
STAIR 184 287 471 288.15
ETAMACRO 668 256 924 400.67

Table 7.1.1 Self-Dual Algorithm Normalized Variant—Unscaled with UB Basis

Problem Name] Primal "Dual Total CPU Time
Iterations | Iterations | Iterations | (Seconds)
AFIRO 4 2 6 0.61
ADLITTLE 51 42 93 11.36
SHARE2B 71 90 161 23.27
SHAREIB 206 178 384 74.34
BEACONFD 29 12 41 10.17
ISRAEL 305 76 381 93.66
Y ~ 213 345 558 161.11
E226 238 154 392 123.01
CAPRI 87 181 268 78.32

BANDM 253 199 452 175.63 |
STAIR 233 220 453 280.44
ETAMACRO 504 162 666 279.46

Table 7.1.2 Self-Dual Algorithm Normalized Variant—Scaled with UB Basis

“»

I W
hJ

CCR I AT

LIPS

LA

v

Y, N AR

Table 7.1.3 Self-Dual Algorithm Normalized Variant—Unscaled with SB Basis

Problem Name] Primal Dual Total CPU Time
Iterations Iterations Iterations | (Seconds)
AFIRO 4 2 6 0.62 |
ADLITTLE 58 54 112 13.65
SHARE2B 70 101 171 24.56
SHAREI1B 132 154 286 55.40
BEACONFD 36 43 79 20.24
ISRAEL 175 100 275 66.91
BRANDY 120 226 346 99.10
E226 280 176 456 145.00
CAPRI 45 181 226 63.37
BANDM 278 261 539 203.64
STAIR 184 186 370 220.98
ETAMACRO 444 356 800 352.97

Table 7.1.4 Self-Dual Algorithm Normalized Variant—Scaled with SB Basis

A A

)

..............
.....

D

AR S

Section 7.1 Normalized Covering Vectors 47
Problem Name] Primal Dual Total CPU Time |
Iterations | Iterations | Iterations | (Seconds)
AFIRO 7 ¥ g 063
ADLITTLE 51 66 117 13.88
SHARE2B 53 82 135 19.23
[SHAREIB 112 172 284 54.16
BEACONFD 33 6 39 10.05
ISRAEL 209 122 331 82.38
BRANDY 114 215 329 0842 |
E226 324 195 519 171.33
CAPRI 57 195 252 71.79
BANDM 262 255 517 201.80 |
STAIR 307 217 524 298.66
ETAMACRO 437 228 665 289.38

DR UL U U U U U LA UM U L AT LA L LT LN LT U L S LA L U U U L M AR VY R U U U R U U U Y Oy N L Y A R T R T IOy Y W I T IO

48 Section 7. Variants of the Self-Dual Parametric Algorithm

Starting Basis UB SB
Scaling Status|Unscaled| Scaled [Unscaled| Scaled .
UB Unscaled 4W-TL | 4W-JL | TW-L | *
Scaled TWAL W-BL | 6W3L | :
SB Unscaled TW-AL [6W-4L 6W-5L | ;
Scaled 4W-TL | SW-6L | SW-6L

Table 7.1.5 Self-Dual Algorithm Normalized Variant—
Comparison of Scaling versus Nonscaling

Start@sBﬁs 4‘) UB | SB
Scaling Status nscaled! ‘Scaled Lﬁ_‘nscaleﬁl Scaled
Self-Dual (NCV) CPU [3W-9 W-12L [OW-12L | OW-12L | :
versus Two-Phase | Iterations | 3W-8L | 2W-OL | 4W-7L | SW-6L

Table 7.1.6 Self-Dual Algorithm Normalized Variant—
Comparison to Two-Phase Algorithm

Starting Basis]i} UB % SB
“Scaling Status nscaled| Scaled |[Unscaled| Scaled
Self-Dual (NCV) CPU SW-TL | 6W-6L | 6W-5L | 7TW-4L
versus Self-Dual | lterations | SW-6L | 4W-/L | 6W-5L | 4W-7L

Table 7.1.7 Self-Dual Algorithm Normalized Variant— >
Comparison to Self-Dual Algorithm

7.2 Fixed Variables

Some general linear programs have constraints of the form
alz = b;. (7.2.1)

Whe such a linear program is converted to MINOS standard form, the slack variable z,,4,
corresponding to this constraint will have equal lower and upper bounds. Any variable r;
with equal lower and upper bounds is known as a fixed variable. In the dual of the linear
program, the complement of a fixed variable is free; in other words, the complementary
variable has infinite lower and upper bounds. Hence, once a fixed variable becomes nonbasic
in the course of executing any variant of the simplex method, that variable will never
become basic at a later iteration.

Fixed variables can appear in the initial crash basis, because they must be included
in order to maintain the lower triangularity of the crash basis. If the fixed variable is not
at its bound, then Phase I will consider the fixed variable to be infeasible and include the
variable in the Phase I objective. Eventually, this will cause the fixed variable to attain

E
"

Section 7.2 Fixed Variables 49

its bound. At that point, the variable will exit the basis if the equation (7.2.1) is not
redundant given the other linear equations in the linear program. There seems to be an
intuitive advantage to having as few fixed variables in the set of basic variables as possible.
It is interesting to note that the two-phase simplex method causes a fixed variable to exit
the basis by choosing incoming columns before choosing exiting columns in each iteration.

The self-dual algorithm has the property that it can choose exiting columns before
incoming columns. The idea behind this variant of the self-dual algorithm is to cause as
many fixed variables as possible to exit the basis before proceeding with the usual self-dual
method. Because of the freedom allowed in the initial choice of f and d, f can be chosen
so that some fixed variable “wins” the initial ratio test in the self-dual algorithm. The
dual-simplex method is invoked and that fixed variable exits the set of basic variables,
never to reenter. The method can then be restarted by choosing a new f and d so that
another fixed variable will now exit the basis. If all basic fixed variables are at their bounds
or are nonbasic, then the usual self-dual algorithm is invoked. The algorithm will converge
since either a fixed variable exits the basis on an iteration or 8 is reduced.

The initial values of f and d are chosen in the default way and the new value of 8 is
computed. The fixed variable that is furthest from its bound is then chosen as the variable
to become nonbasic. For example, suppose z; is the i*h basic variable and is designated

as the most infeasible fixed variable, and that the current value of z; > I;. Then f, is
modified so that

(7.2.2)

which would force r; to be the exiting variable if the initial ratio test in the self-dual
algorithm were recomputed. After r; exits the basis, f and d are reset to their initial
values depending upon the new values of the basic variables 5 and reduced costs ¢.

The fixed-variable variant of the self-dual algorithm can be used with the default initial
choices of f and d (equations (7.1.3) and (7.1.4)) or with the normalized covering vector
considered in the previous section. The computational results with the default covering
vector are shown in Tables 7.2.1-7.2.4, while the results with the normalized covering
vector are shown in Tables 7.2.5-7.2.8.

Tables 7.2.9-7.2.10 summarize the effects of scaling on the fixed-variable variant of the
self-dual algorithm with both covering vectors. The results are varied enough to suggest
no trends relative to this algorithm for scaling or the choice of basis.

Tables 7.2.11-7.2.12 compare the fixed-variable (FV) variant of the self-dual algorithm
to the two-phase algorithm for the default covering vector and the normalized covering
vector (NCV'). For both covering vectors, the number of iterations decreased for some of
the problems (especially when the problem was unscaled and using the UB basis), but
improvements in CPU time occurred for only a few problems.

Tables 7.2.13-7.2.14 compares the fixed-variable (FV) variant of the self-dual algo-
rithm to the regular self-dual algorithm for each of the covering vectors. This allows one
to see if eliminating the fixed variables first yields any improvements for the self-dual al-
gorithm. There seems to be no clear advantage or clear disadvantage to using this variant
of the self-dual algorithm.

......
’ r

50

Section 7. Variants of the Self-Dual Parametric Algorithm

Table 7.2.1 Self-Dual Algorithm Fixed Variable Variant—Unscaled with UB Basis

Table 7.2.2 Self-Dual Algorithm Fixed Variable Variant—Scaled with UB Basis

ProbEmWamﬁ “Primal Dual Total CPU Time |
Iterations | Iterations | Iterations | (Seconds)
AFIRO 4 6 0.62
ADLITTLE 23 79 102 12.39
SHARE2B 44 63 107 15.85
SHAREIB 127 203 330 70.02
BEACONFD 27 10 37 9.46
ISRAEL 240 82 322 82.35
BRANDY 208 — 250 458 146.02 |
E226 286 148 434 147.25
CAPRI 48 176 224 64.78
‘BANDM 202 ~ 233 525 213.84 |
STAIR 246 146 392 233.80
ETAMACRO 407 254 661 299.10

Problem Name] Primal Dual Total CPU Time
| Iterations Iterations | Iterations | (Seconds)
AFIRO 4 6 0.62 |
ADLITTLE 28 42 70 8.25
SHARE2B 67 79 146 20.95
SHAREIB 148 135 283 56.03 |
BEACONFD 28 23 51 13.62
ISRAEL 177 60 237 61.32
BRANDY 214 302 516 | 161.35
E226 264 140 404 133.92
CAPRI 39 252 291 83.85
BANDM 703 77 770 | 180.13
STAIR 149 141 290 189.93
ETAMACRO 561 364 925 412.55

............
..........

..................

B -
- - -

23 WO

EX5 S 5

B)OI

€ r Core oo
N

.

»
~
v
\
.

\
" P
-

Section 7.2 Fixed Variables
oblem Name] Primal Dual ~ Total CPU Time
Iterations Iterations Iterations | (Seconds)
AFIRO 4 2 6 0.61
ADLITTLE 44 84 128 15.47
SHARE2B 53 59 112 16.02
HAREIB 136 150 286 60.61
BEACONFD 35 8 43 10.73
ISRAEL 210 21 231 60.16
BRANDY 213 161 374 121.40
E226 265 185 450 151.29
CAPRI 58 244 302 90.02
BANDM 296 278 574 236.15
STAIR 323 151 474 289.22
ETAMACRO 414 292 706 325.61

Table 7.2.3 Self-Dual Algorithm Fixed Variable Variant—Unscaled with SB Basis

Problem Name] Primal Dual Total CPU Time
Iterations Iterations Iterations | (Seconds)
AFIRO 4 2 6 0.60
ADLITTLE 51 59 110 12.18
SHARE2B 91 81 172 24.95
SHAREIB 151 156 307 59.23
BEACONFD 34 24 58 15.36
ISRAEL 176 33 209 55.79
BRANDY 157 174 331 104.48
E226 364 206 570 184.81
CAPRI 47 249 296 89.98
BANDM 249 295 544 216.29 |
STAIR 158 173 331 203.05
ETAMACRO 309 162 471 205.79

Table 7.2.4 Self-Dual Algorithm Fixed Variable Variant—Scaled with SB Basis

..............................
..................

52

Section 7. Variants of the Self-Dual Parametric Algorithm

Table 7.2.5 Self-Dual Algorithm Fixed Variable Normalized—Unscaled with UB Basis

blem Name] Primal Dual Total | CPU Time |
Iterations | Iterations | Iterations | (Seconds)
AFIRO 4 6 0.61
ADLITTLE 49 52 101 11.99
SHARE2B 60 81 141 20.19
[SHARE1B 89 1 212 43.53
BEACONFD 28 10 38 9.87
ISRAEL 265 93 358 87.80
'BRANDY — 200 320 520 161.34
E226 303 143 446 149.89
CAPRI 71 144 215 61.64

' BANDM 284 303 587 M‘J
STAIR 249 148 397 230.72
ETAMACRO 299 204 503 227.17

[Problem Name] Primal Dual “Total CPU Time
Iterations Iterations Iterations | (Seconds)
AFIRO 4 2 6 0.63 |
ADLITTLE 48 44 92 11.26
SHARE2B 71 90 161 23.44
HAREIB 191 172 363 ~74.43
BEACONFD 29 10 39 9.95
ISRAEL 305 76 381 94.73
BRANDY 206 ~ 249 455 137.77
E226 219 150 369 116.69
CAPRI 72 209 281 82.75
BANDM 248 219 467 1790.08 |
STAIR 285 170 455 287.49
ETAMACRO 358 205 563 248.36

Table 7.2.6 Self-Dual Algorithm Fixed Variable Normalized -Scaled with UB Basis

uuuuu

Problem Name| Primal Dual Total CPU Time
Iterations Iterations Iterations | (Seconds)
AFIRO 4 2 6 0.64
ADLITTLE 52 54 106 12.74
SHARE2B 70 101 171 24.34
SHAREI1B 124 223 347 T1.47 |
BEACONFD 41 22 63 16.61
ISRAEL 175 100 275 70.12
BRANDY 142 249 391 119.78 |
E226 283 170 453 143.52
CAPRI 61 207 268 80.18
BANDM 321 336 657 254 8S
STAIR 247 153 400 25491
ETAMACRO 321 206 527 233.27

Labde 72 % Self Dual Algorithm Fixed Vanable Normalized

Scaled with SB Basis

Section 7.2 Fixed Variables 53
Problem Name] Primal Dual Total | CPU Time
Iterations Iterations Iterations | (Seconds)
'AFIRO 4 6 0.65
ADLITTLE 54 47 101 10.17
SHARE2B 53 82 135 19.52
SHAREIB 30 113 193 4047 |
BEACONFD 32 5 37 8.16
ISRAEL 209 122 331 80.80
BRANDY 185 230 413 130.76 |
E226 321 213 534 173.90
CAPRI 49 179 228 66.72
BANDM ~ 308 232 340 216.70
STAIR 305 121 426 254.39
ETAMACRO 899 388 1287 593.00

Table 7.2.7 Self-Dual Algorithm Fixed Variable Normalized—Unscaled with SB Basis

Section 7. Variants of the Self-Dual Parametric Algorithm

Starting Basis UB SB
Scaling Status|Unscaled| Scaled [Unscaled| Scaled

UB Unscaled SW-6L | 8W-3L | SW-5L
Scaled “6W-5L 6W-5L | 8W-3L
SB Unscaled 3W-8L | SW-6L 3W-7L
Scaled SW-5L W-8L | 7W-3L

Table 7.2.9 Self-Dual Algorithm Fixed Variable Variant—
Comparison of Scaling versus Nonscaling

tarting Basis UB SB
Scaling Status|Unscaled| Scaled |Unscaled| Scaled
UB Unscaled TW-4L | 4W-6L | 8W-2L |
Scaled dW-TL 3W-TL | SW-6L
SB Unscaled 6W-4L | TW-3L 6W-4L
Scaled W-EL | 6W-5L [4W-6L

Table 7.2.10 Self-Dual Algorithm Fixed Variable Normalized—

Comparison of Scaling versus Nonscaling

Starting Basis T‘ﬁ UB 4ﬁ

Scaling Status nscaled| Scaled |Unscaled
elf-Dual (Fixed Vars) CPU 2W-10L | 2W-10L | OW-12L
| versus Tvo-Phase | lterations | 8W-3L | 4W-7L | 4W-J/L

Table 7.2.11 Self-Dual Algorithm Fixed Variable Variant- -
Comparison to Two-Phase Algorithm

Starting Basis | UB #
Scaling Status 'nscaled| Scaled [Unscaled

elf-Dual (FV) (NCV) CPU 4W-81. | 1IW-11L | 3W-9L
versus 1wo-Phase | lterations | 6W-4L. | 2W-8L | SW-6L.

Table 7212 Self Dual Algonthim Fixed Vanable Normanzed
Companson to Two Phase Aleanithm

Section 7.2 Fixed Variables 55

Starting Basis UB {U SB
Scaling Status nscaled|] Scaled [Unscaled| Scaled
Self-Dual (Fixed Vars) CPU 6W-6L | 6W-3L | 6W-6L | 6W-6L
versus Self-Dual Tterations | SW-4L | 3W-4L | 4W-3L | 4W-5L

Table 7.2.13 Self-Dual Algorithm Fixed Variable Variant—
Comparison to Self-Dual Algorithm

Starting Basis UB | SB
nscale cale nscaled| Scaled |

Scaling Status (ﬂ
Self-Dual (FV) (Ngb) CpPU TW-3L | SW-TL | 6W-5L | SW-7/L
vs. Self-Dual (NCV) | lterations | SW-4L | GW-3L | SW-4L W-3L

Table 7.2.14 Self-Dual Algorithm Fixed Variable Normalized —
Comparison to Normalized Self-Dual Algorithm

PR T T PR -
VLR SN

56 Section 8. Summary and Comparisons of Results

Section 8. Summary and Comparisons of Results

In this section, the computational results are used to compare all the algorithms
against each other. Although one would expect that one of the many possible composite
algorithms would turn out to be a clear winner, the evidence suggests that no algorithm is
best for all problems. The two-phase and self-dual algorithms were used for a sensitivity
analysis, and the evidence indicates that the choice of the best algorithm is not clear even
when the problems have the same sparsity structure. In the last section, some suggestions
for further research are offered.

8.1 Comparing Many Algorithms

In the course of comparing two different simplex variants on a specific linear program, two
computer runs are made. It is important to be conscious of any differences between the two
runs that may affect the interpretation of the results of these runs. The major differences
between two such runs will be in the choice of scaling and the choice of the initial basis. In
the earlier sections, the effects of these choices for each algorithm were compared, and it
seemed that choosing the SCALE option of MINOS or either starting crash basis had little
effect on the results. In this type of comparison, the algorithm chosen was a fixed control
and the choice of scaling and the starting bases were varied. Tables were also presented
that compared each composite algorithm to the two-phase algorithm. Here, the choices of
scaling and the starting basis were fixed when two algorithms were compared. From these
pairwise comparisons, one can measure how often one algorithm was better than another.
However, they offer no measure as to how much better that algorithm was.

A scoring system can be used to measure the relative speeds of the different composite
algorithms to the two-phase algorithm. We are interested in comparing the relative de-
crease or increase in the iteration counts and CPU time, which we will call a performance
measure. Let g, be the value of a performance measure for Algorithm a (a = 0,1) on
some problem. Suppose that Algorithm 0 is the two-phase algorithm, whose performance
measures will be used as the standard for comparing all of the other algorithms. Then the
performance factor p; for Algorithm i is defined as

pi = 100(). (8.1.1)
q0

Hence, if the performance measure being used was CPU time, then a value p; = 120
would mean that Algorithm 1 was 20 percent slower than the two-phase algorithm. while,
similarly, a value p; = 70 would mean that Algorithm 1 was 30 percent faster than the
two-phase algorithm. It should be noted that the performance factors for the two-phase
algorithm will always be 100.

Performance factors can be computed by comparing the runs of two algorithms on
the same problem using the same scaling option and the same starting basis. Hence, for
each starting basis, scaling option, and algorithm, 12 performance factors are computed (1
for each problem). The minimum, maximum, and average values of these 12 performance
factors are then computed. In the tables that follow, the performance factors are rounded
to the nearest integer. Performance factors are computed for iteration counts and CPU
time.

Table 8.1.1 presents the performance factors for iterations counts. Each algorithm has
at least one problem for which it gives a 24 percent improvement in the number of iterations
as compared to the two-phase algorithm. The average number of iterations was in most

NP A A A RARAAT AR

,,...
v s -
RPN

~
)

Section 8.1 Comparing Many Algorithms 57 ;
Scaling Starting| Iterations Perf. Factors -
Algorithm Status Basis | Min | Max | Mean ’
Unscaled UB 100 100 100 ¢
Two-Phase SB 100 100 100 :
Scaled UB 100 100 100 ,
SB 100 100 100 X
Unscaled UB 81 114 97 | :
Weighted Objective SB 81 122 97
Scaled UB 93 105 100
SB 76 120 98
Unscaled UB 73 197 125
Markowitz Criterion SB 92 222 144
Scaled UB 62 577 161
SB 69 475 150
Unscaled UB 61 171 106
Self-Dual SB 58 137 105 0
Scaled UB 78 170 111
SB 91 142 107
Unscaled UB 74 192 109 -
Self-Dual SB 70 153 107
(Normalized Covering| Scaled UB 81 153 118
Vector) SB 90 203 113
Unscaled UB 76 157 98
Self-Dual SB 74 130 105
(Fixed Variables) Scaled UB 78 135 108
SB 53 | 149 | 107
Unscaled UB 74 178 99
Self-Dual SB 63 153 109
(Normalized Covering| Scaled UB 74 149 114
Vector) (Fixed Vars.) SB 59 162 114
Table 8 1.1 Performance Factors for Iteration Counts .
cases comparable to that of the two phase algonthm . Most of the algonithms exhibit a wide
range of performance factors for iteration counts as compared to the two phase algorithm. *
Table X.1.2 presents the performance factors for CPU time. Once again. all the algo K

nthms had at least one problem that had less CPU time than the two phase algonthm
Overall. only the weighted objective aleornhin seenis to he consaistentlv competitive. On
the average the self dual algornthon and its variants were 30 to 40 percent <Jower than the
two phase algonithi

Fhese performanse factors yndicare thas there oo

alronthnn that consistentIy per

S p N b b ph.og i p® ‘B Vari.ny 2’2 2%5 22 ath o' ald a' UYL PLU VWU WNUY W WA WA ™Y ot B4% Ba® G, 420 0,0 S.F 4. €2 8,698 B0 R IRN'e 028002 ' 0% b atal Qe &

58 Section 8. Summary and Comparisons of Results

Scaling™ [Starting] CPU Time Perf. Factors
, Algorithm Status Basis | Min Max Mean
b Unscaled UB 100 100 100
Two-Phase SB 100 100 100
“Unscaled UB 100 100 100
SB 100 100 100
Scaled UB 84 117 99
Weighted Objective SB 85 128 101
“Unscaled UB 03 111 104
SB 81 126 100
Scaled UB 31 217 143 |
Markowitz Criterion SB 105 259 169
A “Unscaled UB 14 586 180
) SB 78 516 172
\ ~Scaled UB 78 | 220 133 |
Self-Dual SB 15 173 136
Unscaled UB 98 188 139 |
SB 111 177 135
~Scaled UB ~ 04 246 136
Self-Dual SB 106 185 134
(Normalized Covering| Unscaled UB 104 | 201 146
Vector) SB 105 240 140
~Scaled UB ~86 | 214 126
Self-Dual SB 102 177 137
(Fixed Variables) Unscaled UB 98 180 139
SB 75 186 136
Scaled UB ~ 84 237 124
Self-Dual SB 85 216 139
(Normalized Covering| Unscaled UB 08 202 144
Vector) (Fixed Vars.) SB 85 197 144

Table 8.1.2 Performance Factors for CPU Times

forms better than any other algorithm. For each algorithm, there is at least one problem
for which that algorithm is best. Given a problem, there seems to be no rule that allows
one to choose an algorithm which will perform best on that problem.

Section 8.2 Sensitivity Analysis 59

8.2 Sensitivity Analysis

Users of commercia! linear programming systems frequently solve a particular linear pro-
gram and then solve some perturbation of that problem. This perturbation usually 1s of
the same structure as the original problem, and may only differ in the elements of A, b,
and c¢. It is often useful to solve such a perturbed problem by using an optimal basis of
the original problem as the starting basis for the new problem. Usually, only a few pivots
of the simplex method must be done to reach the optimal basis of the new problem.

A perturbation as described above can cause the original optimal basis to become
either primal infeasible, dual infeasible, or both. In the case of primal infeasibility, the
dual simplex method is usually used. In the case of dual infeasibility, Phase Il of the
two-phase algorithm is used. When both the primal and dual problems are infeasible, the
two-phase algorithm is usually used. In such a case, however, the self-dual algorithm may
perform well, since only a few iterations may be needed.

In order to analyze the application of the self-dual algorithm for sensitivity analysis, it
1s necessary to determine a “real-world” perturbation of a “real-world” problem. A random
perturbation of a problem would most likely destroy any degeneracies that were present.
Fortunately, the literature contains a good example of a “real-world” perturbation.

Manne (1973a) described the model DINAMICO in enough detail to allow the asso-
ciated linear program to be defined in a modeling language such as GAMS (Bisschop and
Meeraus, 1982). GAMS can be used to create an input file for MINOS to use to solve the
problem. This procedure was followed. and the optimal basis for the problem was saved.
The problem has 319 rows, 424 columns, and 4157 nonzeroes. Manne (1973b) (pg. 152)
later described different alternatives to the initial problem that can be solved. All the
alternatives described leave the sparsity structure of the matrix A unchanged, but change
only either the primal or dual infeasibility of the original problem, not both simultaneously.

Alternative cases 1 and 2 from Manne’s paper vary the growth rate g used in the
model. Varving this rate changes the primal infeasibility of the optimal basis. Alternative
case 5 from Manne’s paper makes the optimal basis dual infeasible. Both of these variations
were made simultaneously, and the growth rate g was varied from a value of 4 percent to
12 percent. The case ¢ = .07 corresponds to the optimal basis. Note that when ¢ = .06,
the optimal basis for the case ¢ = .07 was the same, and hence the only computations that
MINOS performed were to determine that the initial basis was optimal without performing
any pivots,

Growth Rate || Two-Phase Self-Dual
g Itns| CPU [| Itns [CPU
0.04 41| 31.48 39 33.71
0.05 451 29.90 30 27.15
0.06 6| 12.83 13.72 |
0.08 S0 32.83 12| 16.52
0.09 115 76.19 137 | 100.18
0.10 224113274 1851 139.09
0.11 115] 66.84 2001 144.03
0.12 124 80.58 1811 130.76

Table ~.200 Sensitivty Analvsis Results

..

......

Cal N e

a4 A3 R

Clat e it b

4, pva B Yook e, B, Ba B, d'. g1 @Y L LWL L (Y LW LA\ L) A LA W UL UW LAY L AT S LT LAY LN AT L L Y LR T T T ey 1,498 -

60 Section 8. Summary and Comparisons of Results

Table 8.2.1 shows the results for the two-phase algorithm and the self-dual algorithm
with the default covering vector. Note that the self-dual algorithm had competitive itera-
tion counts for most of the cases.

B Two-Phase @ Self-Dual

160.00
140.00 1
120.00 |
100.00 ¢
80.00 -
60.00
40.00 4
20.00 | :
0.00 - ; EX o % 5 _
0.04 0.05 0.06 0.08 0.09 0.10 0.11 0.12
Growth Rate g

vaboocowm CUYN

Figure 8.2.2 CPU Times for Sensitivity Analysis

It is interesting to compare the CPU time results using a graph as in Figure 8.2.2.
The better CPU times are indicated by smaller bars. The self-dual algorithm outperforms
the two-phase algorithm when g = .05 and g = .08. It is interesting to note the difference
in performance for g = .10 as compared to g = .09, .11, or .12. It seems that the self-dual
algorithm is better for small perturbations; conversely, the two-phase algorithm is better
for large perturbations. However, it should be noted that the amount of CPU time did
not increase monotonically as g increased. This suggests that it is difficult to predict the
performance of either algorithm for arbitrary values of g.

All these problems were run from the same crash basis. The problems have the
same structure for A, but approximately 120 of the nonzeros differ in value. These results
suggest again that no one algorithm will perform consistently better than another on every
problem, even when the problems have the same structure, i.e., problems which have the
same pattern of nonzero data in A, but different values for some of those nonzeroes.

......
. ‘. .
>y » »

Section 8.4. Acknowledgements 61

8.3 Summary and Further Research

The computational results contained in this study exhibit the sensitivity of the simplex
method to different schemes for choosing the incoming and outgoing variables. Intuitively,
one would expect that a composite algorithm would perform better than the two-phase
algorithm, but only the weighted objective algorithm was consistently competitive. The
two-phase algorithm and weighted objective method have a good average performance.
Other algorithms seem to perform better than the two-phase algorithm on a few problems,
indicating that no rule exists that allows one to choose the best method for a particular
problem. The drawback of most of these alternative methods is that they require more
work per iteration than the two-phase algorithm to choose s and r. They can only be
faster than the two-phase algorithm if the number of iterations is significantly lowered (30
percent or more). Probably the best way to choose a variant of the simplex method is to
use the two-phase algorithm first. If it performs poorly, then trying another variant of the
simplex method may be in order. If n is much larger than m, the two-phase algorithm,
weighted objective method, and the Markowitz criterion can each be used with partial
pricing.
Some open questions that remain are:

1. What happens to a class of problems that are related in structure, but grow in size?

2. Do there exist other variants of the simplex method that will consistently do better
than the two-phase algorithm?

3. Are there variants that have advantages over others in degenerate situations?

4. Can the methods of artificial intelligence be used to analyze a problem in advance,
and then dynamically vary the choice of variant of the simplex method to use as the
computation progresses?

5. Can one develop a matrix generator for creating problems that are in some sense ran-
dom and yet representative of the variety of structures found in real-world problems?

8.4. Acknowledgements

I would like to thank George B. Dantzig, Richard W. Cottle, Michael A. Saunders and
B. Curtis Eaves for their helpful insights during the course of this study. I would also
like to thank the Department of Operations Research for allowing me to use their DEC
VaxStation Il and Macintosh computers for this work.

This material is based vpon work supported under a National Science Foundation
Graduate Fellowship. Any opinions, findings, concl<ions or recommendations expressed
in this publication are those of the author and do not necessarily reflect the views of the
National Science Foundation.

P U T S N TN
P IR I N N TR TS P O S - N -
LRI A A R R A N AR e e e,

PR . . ,’.-_-.. O T S IR AT RO S TPTA R .
S N, T T, T T T T P M T VT T T VL T T P R A A R R S

~

.

62 Section 9. Bibliography
Section 9. Bibliography q
A

Aho, A.V., Hopcroft, J.E., and Uliman,J.D. (1974). The Design and Analysis of Computer N
Algorithms, Addison-Wesley Publishing Company, Menlo Park, California. '\-

Bisschop, J. and Meeraus, A. (1982). On the development of a General Algebraic Modeling Dy
System in a strategic planning environment, Mathematical Programming Study 20, X
pp. 1-29. :

Brad:. Stephen (1986). Private Communication. "

Charnes, A., Cooper, W.W., and Henderson, A. (1953). An Introduction to Linear Pro-
gramming, John Wiley & Sons, New York.

Cottle, R.W. (1972). Monotone solutions of the parametric linear complementarity prob-
lem, Mathematical Programming 3, 2, pp. 210-224.

Dantzig, G.B. (1951). “Maximization of a Linear Function of Variables Subject to Linear 7]
Inequalities,” in Activity Analysis of Production and Allocation (T.C. Koopmans, 7
ed.), John Wiley & Sons, New York. b

Dantzig, G.B. (1963). Linear Programming and Extensions, Princeton University Press, "
Princeton, New Jersey. N,

Dantzig, G.B. (1987). “Origins of the simplex method,” in Proceedings of the ACM confer- o
ence on the History of Scientific and Numeric Computation, May 13-15, 1987, Prince- N
ton, New Jersey, to appear. "C

Eaves, B.C. (1971). The linear complementarity problem, Management Science 17, 9, pp. -
612-634. ~

Fourer, R. (1982). Solving staircase linear programs by the simplex method, 1: Inversion, :_'.‘
Mathematical Programming 23, 3, pp. 274-313. N

Gill, P.E., Murray, W., and Wright, M.H. (1981). Practical Optimization, Academic Press, :
San Francisco. .

Gill, P.E., Murray, W., Saunders, M.A., Tomlin, J.A., and Wright, M.H. (1986). On pro- "
jected Newton barrier methods for linear programming and an equivalence to Kar- N
markar’s projective method, Mathematical Programming 36, 2, pp. 183-209.

-

Greenberg, H.J. (1978). “Pivot selection tactics,” in Design and Implementation of Opti- >
mization Software (H.J. Greenberg, ed.), Sijthoff & Noordhoff, Alphen aan den Rijn,

The Netherlands, pp. 143-174. .

Hadley, G. (1962). Linear Programming, Addison-Wesley Publishing Company, Inc., Palo :
Alto, California. .

Hoffman, A., Mannos, M., Soklowsky, D., and Wiegmann, N. (1953). Computational ex-
perience in solving linear programs, Journal of the Society of Industrial and Applied ~
Mathematics 1, pp. 17-33. e

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming, Combi- o
natorica, 4, 4, pp. 373-395. “)

Krueger, F. (1986). d-arrangements and Random Polyhedra, Ph.D. Thesis, Department of ".

perations Research, Stanford University. =
N
o
Tay ;" :'-‘: ‘: -: - ':'\-'"'; o ‘-'-\"' - —'.'\—-\-" et 'r\"-' T T R TN O .": . ERAN e ~

.......

Section 9 Bibliography 63

Kuhn, H. and Quandt, R. (1962). An experimental study of the simplex method, Symposia
in Applied Mathematics 15, American Mathematical Society, Providence, RI, pp. 107~
124.

Lemke, C.E. (1965). Bimatrix equilibrium points and mathematical programming, Man-
agement Scierce 11, pp. 681-689.

Lemke, C.E. (1970). “Recent results on complementarity problems,” in Nonlinear Pro-
gramming (J.B. Rosen, O.L. Mangasarian, and K. Ritter, eds.), Academic Press, New
York, pp. 349-384.

Lustig, I.J. (1987). The equivalence of Dantzig’s self-dual parametric algorithm for linear
programs to Lemke’s algorithm for linear complementarity problems applied to linear
programs, Report SOL 87-4, Department of Operations Research, Stanford University,
CA.

Manne, A.S. (1973a). “DINAMICO, a dynamic multi-section multi-skill model,” in Multi-
Level Planning: Case Studies in Mexico (L.M. Goreux and A.S. Manne, eds.), North-
Holland Publishing Company, Amsterdam, pp. 107-150.

Manne, A.S. (1973b). “Economic alternatives for Mexico: A Quantitative Analysis,” in

Multi-Level Planning: Case Studies in Mexico (L.M. Goreux and A.S. Manne, eds.),
North-Holland Publlshmg Company, Amsterdam, pp. 151-172.

Mayberry, J. (1951). “A geometrical interpretation of the simplex method,” in Symposium
on Linear Inequalities and Programming (A. Orden and L. Goldstein, eds.), Project
SCOOQOP, No. 10, Planning Research Division, Director of Management Analysis Ser-
vice, Comptroller, USAF, Washington, DC.

McCammon, S.R. (1970). On complementary pivoting, Ph.D. thesis, Department of Math-
ematics, Rensselaer Polytechnic Institute, Troy, NY.

Megiddo, N. (1983). Linear-time algorithms for linear programming in R3 and related
problems, SIAM Journal of Computing, 12, 4, pp. 759-776.

MPS II1 mathematical programming system: User manual (1975), Ketron, Inc., Arlington,
VA.

Murtagh, B. A. and Saunders, M. A. (1983). MINOS 5.0 user’s guide, Report SOL 83-20,
Department of Operations Research, Stanford University, CA.

Nishiya. T. and Funabashi, M. (1984). A basis factorization method for multi-stage linear
programming problems with an application to optimal operation of an energy plant,
Working Paper, Systems Development Laboratory, Hitachi, Ltd..

Orden. A. (1951) “Application of the simplex method to a variety of matrix problems,”
in Svmposium on Linear Inequalities and Programming (A. Orden and L. Goldstein,
eds.). Project SCOOP, No. 10, Planning Research D1v151on Director of Management
Analysis Service, Comptroller, USAF, Washington, DC.

Ravindran, A. (1970). Computational aspects of Lemke’s complementary algorithm applied
to linear programs, Opsearch, 7, 4, pp. 241-262.

Shamir, R. (1987). The eficiency of the simplex method: A survey, Management Science,
33, 3. pp. 301-334.

Wolfe, P. (1961). An extended composite algorithm for linear programming. Paper P-2373,
The Rand Corporation, July, 1961.

Wolfe, P. and Cutler, L. (1963). “Experiments in linear rogramming,” in Recent Advances
in Mathematical Programming (R. Graves and I'. "Volfe, eds.), McGraw-Hill, New
York. pp. 177-200.

P RO YO PRI

A

Nt et

UNCLASSIFIED

SECUMITY CLASSIFICATION OF THIS PAGKE Then Date Bntered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T SOVY ACCEISION O] 5. RECIPIENT'S CATALOG NuweER |
SOL 87-8 D ~-A\S3I Yy 7/
8. TITLE (and Bubtitte) 5. TYPE OF REPORT & PEMCO COVERED
Comparisons of Composite Simplex Algorithms Technical Report

6. PERFORMING ORG. REFPORYT NUMBER

7. AUTHOR(®) . ACY GR GRANY NUNBER()
Irvin J. Lustig NO0014-85-K-0343
‘Lo. PERFORMING ORGANIZATION NAME AND ADDRESS - PROGRAN ELEMENT, PROJECT, TasK
Department of Operations Research - SOL A 4 BORK UMIT NUMSERS)
Stanford University NR-047-064 4
Stanford, CA 94305
ROLLING OFFICE NAME AND ADDRESS 12. REPORT DATR
%}ice of Naval Research - Dept. of the Navy June 1987)
800 N. Quincy Street 15. NUMBER OF PAGES
Arlington, VA 22217 pp. 63
ITT MONITORING AGENCY NAME & ADORESI(I different frem Condreliing Offios) | 18. SECURITY CLASS. (of thie report)
UNCLASSIFIED

'ﬂa._o_:ct ASSIPICATION/ DOWNGRADING |
sCuEouLE

T6. DISTRIBUTION STATEMENT (of thie Repert)

This document has been approved for public release and sale;
its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Blesk 20, il difterent frem Report)

10. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue en reverse side ! necessary and identily by block sumber)

Composite Simplex Algorithm, Computational Comparisons,
Self-dual Parametric Algorithm, Weighted Objective Method,
Markowitz Criterion.

20. ABSTRACT (Ceniinue en reverse side if ary and identify by bieck nsmber)

(Please gsee other side)

DD ‘:2:“” 1473 coimon or 1 nov es s ossoLETE

SECURITY CLASSIPICATION OF THIS PAGE (When Date Enteredd

TER TR U TLE TUR "N "LE FLR TS MUl M

SECUMTY CLASMFICATION OF THIS PAGR(When Date Bntored)

Abstract s

¢
For almost forty years, the simplex method has been the method for

cholce for solving linear programs. The method consists of first finding a "
feasible solution to the problem (Phase I), followed by finding the optimum
(Phase II). Many algorithms have been proposed which try to combine the

processes embedded in the two-phase process. This study will compare the :

merits of some of these composite algorithms.

Theoretical and computational aspects of tae Weighted Objective,

Self-Dual Parametric, and Markowitz Criteria algorithms are presented. .

Different variants of the Self-Dual methods are discussed. .
A large amount of computational experience for each algorithm 1s

presented. These results are used to compare the algorithms in various -4

ways. The implementatons of each algorithm are also discussed. One theme 9

that is present throughout all of the computational experience is that there .

is no one algorithm which is the best algorithm for all problems. -

"

'

2

R

N

Py

-

SECURITY CLASMIFICATION OF Tu'* PAGL(Whe. via Entered) ;

A

e et AT A T A SN S P

’ - 2) PR -_.'3.\-'.'-.- TR R S] e AT DI PO RN N TR o

